может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

С аммиачным раствором оксида серебра взаимодействуют

Качественные реакции в органической химии

Качественные реакции на алканы

Для этого газ либо поджигают — горение алканов сопровождается синим пламенем, либо пропускают через раствор перманганата калия. Алканы не окисляются перманганатом калия на холоду, вследствие этого раствор не будет изменять окраску.

Качественные реакции на алкены

а) Обесцвечивание перманганата калия (реакция Вагнера).

Видео

Получение оксида серебра (I):

Оксид серебра (I) получается в результате следующих химических реакций:

В ходе химической реакции образуется гидроксид серебра, который быстро разлагается на оксид серебра (I) и воду:

Примеры решения задач

Задание При полном сгорании 6 г органического вещества образовалось 8,8 г оксида углерода (IV) и 3,6 г воды. Определите молекулярную формулу сожженного вещества, если известно, что его молярная масса равна 180 г/моль. Решение Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у»и «z» соответственно: CxHyOz+ Oz→CO2 + H2O. Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м. m(C) = n(C)×M(C) = n(CO2)×M(C) = [m(CO2) / M(CO2)]×M(C); m(H) = n(H)×M(H) = 2×n(H2O)×M(H) = [2×m(H2O) / M(H2O)]×M(H); Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr): M(CO2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль; M(H2O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль. Тогда, m(C) = [8,8 / 44]×12 = 2,4 г; m(H) = 2×3,6 / 18 ×1= 0,4 г. m(O) = m(CxHyOz) – m(C) – m(H) = 6 – 2,4 – 0,4 = 3,2 г. Определим химическую формулу соединения: x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O); x:y:z= 2,4/12 :0,4/1 :3,2/16; x:y:z= 0,2 : 0,4 : 0,2 = 1: 2 : 1. Значит простейшая формула соединения CH2Oи молярную массу 30 г/моль [M(CH2O) = Ar(C) + 2×Ar(H) + Ar(O) = 12 + 2×1 + 16 = 12 + 2 + 16 = 30 / моль]. Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс: Msubstance / M(CH2O) = 180 / 30 = 6. Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C6H12O6. Это глюкоза или фруктоза. Ответ C6H12O6

Задание Выведите простейшую формулу соединения, в котором массовая доля фосфора составляет 43,66%, а массовая доля кислорода – 56,34%. Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле: ω (Х) = n × Ar (X) / M (HX) × 100%. Обозначим число атомов фосфора в молекуле через «х», а число атомов кислорода через «у» Найдем соответствующие относительные атомные массы элементов фосфора и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Ar(P) = 31; Ar(O) = 16. Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения: x:y = ω(P)/Ar(P) : ω (O)/Ar(O); x:y = 43,66/31 : 56,34/16; x:y: = 1,4 : 3,5 = 1 : 2,5 = 2 : 5. Значит простейшая формула соединения фосфора и кислорода имеет вид P2O5. Это оксид фосфора (V). Ответ P2O5

Источник

3.6. Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров.

Химические свойства альдегидов и кетонов

Альдегидами называют соединения, молекулы которых содержат карбонильную группу, соединенную с атомом водорода, т.е. общая формула альдегидов может быть записана как

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

где R – углеводородный радикал, который может быть разной степени насыщенности, например, предельный или ароматический.

Группу –СНО называют альдегидной.

Кетоны – органические соединения, в молекулах которых содержится карбонильная группа, соединенная с двумя углеводородными радикалами. Общую формулу кетонов можно записать как:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

где R и R’ – углеводородные радикалы, например, предельные (алкилы) или ароматические.

Гидрирование альдегидов и кетонов

Альдегиды и кетоны могут быть восстановлены водородом в присутствии катализаторов и нагревании до первичных и вторичных спиртов соответственно:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Окисление альдегидов

Альдегиды легко могут быть окислены даже такими мягкими окислителями, как гидроксид меди и аммиачный раствор оксида серебра.

При нагревании гидроксида меди с альдегидом происходит исчезновение изначального голубого окрашивания реакционной смеси, при этом образуется кирпично-красный осадок оксида одновалентной меди:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

В реакции с аммиачным раствором оксида серебра вместо самой карбоновой кислоты образуется ее аммонийная соль, поскольку находящийся в растворе аммиак реагирует с кислотами:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Кетоны в реакцию с гидроксидом меди (II) и аммиачным раствором оксида серебра не вступают. По этой причине эти реакции являются качественными на альдегиды. Так реакция с аммиачным раствором оксида серебра при правильной методике ее проведения приводит к образованию на внутренней поверхности реакционного сосуда характерного серебряного зеркала.

Очевидно, что если мягкие окислители могут окислить альдегиды, то само собой это могут сделать и более сильные окислители, например, перманганат калия или дихромат калия. При использовании данных окислителей в присутствии кислот образуются карбоновые кислоты:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Химические свойства карбоновых кислот

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Карбоксильная группа:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

В связи с тем, что к гидроксильной группе непосредственно прикреплена карбонильная, обладающая отрицательным индуктивным эффектом связь О-Н является более полярной, чем в спиртах и фенолах. По этой причине карбоновые кислоты обладают заметно более выраженными, чем спирты и фенолы, кислотными свойствами. В водных растворах они проявляют свойства слабых кислот, т.е. обратимо диссоциируют на катионы водорода (Н+) и анионы кислотных остатков:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Реакции образования солей

С образованием солей карбоновые кислоты реагируют с:

1) металлами до водорода в ряду активности:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

3) основными и амфотерными оксидами:может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

4) основными и амфотерными гидроксидами металлов:может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

5) солями более слабых кислот – карбонатами и гидрокарбонатами, сульфидами и гидросульфидами, солями высших (с большим числом атомов углерода в молекуле) кислот:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Систематические и тривиальные названия некоторых кислот и их солей представлены в следующей таблице:

Формула кислотыНазвание кислоты тривиальное/систематическоеНазвание соли тривиальное/систематическое
HCOOHмуравьиная/ метановаяформиат/ метаноат
CH3COOHуксусная/ этановаяацетат/ этаноат
CH3 CH2COOHпропионовая/ пропановаяпропионат/ пропаноат
CH3 CH2 CH2COOHмасляная/ бутановаябутират/ бутаноат

Следует помнить и обратное: сильные минеральные кислоты вытесняют карбоновые кислоты из их солей как более слабые:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Реакции с участием ОН группы

Карбоновые кислоты вступают в реакцию этерификации с одноатомными и многоатомными спиртами в присутствии сильных неорганических кислот, при этом образуются сложные эфиры:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Данного типа реакции относятся к обратимым, в связи с чем с целью смещения равновесия в сторону образования сложного эфира их следует осуществлять, отгоняя более летучий сложный эфир при нагревании.

Обратный реакции этерификации процесс называют гидролизом сложного эфира:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Необратимо данная реакция протекает в присутствии щелочей, поскольку образующаяся кислота реагирует с гидроксидом металла с образованием соли:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Реакции замещения атомов водорода в углеводородном заместителе

При проведении реакций карбоновых с хлором или бромом в присутствии красного фосфора при нагревании происходит замещение атомов водорода при α-атоме углерода на атомы галогена:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

В случае большей пропорции галоген/кислота может произойти и более глубокое хлорирование:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Реакции разрушения карбоксильной группы (декарбоксилирование)

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Особые химические свойства муравьиной кислоты

Молекула муравьиной кислоты, несмотря на свои малые размеры, содержит сразу две функциональные группы:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

В связи с этим она проявляет не только свойства кислот, но также и свойства альдегидов:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

При действии концентрированной серной кислоты муравьиная кислота разлагается на воду и угарный газ:

Источник

Химические свойства альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Структурная формула кетонов:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Химические свойства альдегидов и кетонов

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Полуацетали это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

в торичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + 2Cu(OH)2 = 2Cu + CO2 + 3H2O

Чаще в этой реакции образуется оксид меди (I):

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды.

Упрощенный вариант реакции:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метаналя:

3. Замещение водорода у атома углерода, соседнего с карбонильной группой

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

4. Конденсация с фенолами

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

может взаимодействовать как с аммиачным раствором оксида серебра так и с активными металлами

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.).

5. Полимеризация альдегидов

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *