что сначала умножение или возведение в степень

Порядок действий в математике

что сначала умножение или возведение в степень

Основные операции в математике

Порядок вычисления простых выражений

Есть однозначное правило, которое определяет порядок выполнения действий в выражениях без скобок:

Из этого правила становится яснее, какое действие выполняется первым. Универсального ответа нет, нужно анализировать каждый пример и подбирать ход решения самостоятельно.

Что первое, умножение или деление? — По порядку слева направо.

Сначала умножение или сложение? — Умножаем, потом складываем.

Порядок выполнения действий в математике (слева направо) можно объяснить тем, что в нашей культуре принято вести записи слева направо. А необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Рассмотрим порядок арифметических действий в примерах.

Пример 1. Выполнить вычисление: 11- 2 + 5.

В нашем выражении нет скобок, умножение и деление отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычтем два из одиннадцати, затем прибавим к остатку пять и в итоге получим четырнадцать.

Вот запись всего решения: 11- 2 + 5 = 9 + 5 = 14.

Пример 2. В каком порядке выполнить вычисления в выражении: 10 : 2 * 7 : 5?

Чтобы не ошибиться, перечитаем правило для выражений без скобок. У нас есть только умножение и деление — значит сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Сначала выполняем деление десяти на два, результат умножаем на семь и получившееся в число делим на пять.

Запись всего решения выглядит так: 10 : 2 * 7 : 5 = 5 * 7 : 5 = 35 : 5 = 7.

Пока новые знания не стали привычными, чтобы не перепутать последовательность действий при вычислении значения выражения, удобно над знаками арифметический действий расставить цифры, которые соответствуют порядку их выполнения.

Например, в такой последовательности можно решить пример по действиям:

что сначала умножение или возведение в степень

Действия первой и второй ступени

В некоторых учебниках по математике можно встретить разделение арифметических действий на действия первой и второй ступени.

С этими терминами правило определения порядка выполнения действий звучит так:

Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем — действия первой ступени (сложение и вычитание).

что сначала умножение или возведение в степень

Порядок вычислений в выражениях со скобками

Иногда выражения могут содержать скобки, которые подсказывают порядок выполнения математических действий. В этом случае правило звучит так:

Сначала выполнить действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем — сложение и вычитание.

Выражения в скобках рассматриваются как составные части исходного выражения. В них сохраняется уже известный нам порядок выполнения действий.

Рассмотрим порядок выполнения действий на примерах со скобками.

Как правильно решить пример:

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, которые заключены в эти скобки.

Подставляем полученные значения в исходное выражение:

Порядок действий: умножение, деление, и только потом — сложение. Получится:

10 + 2 * 8 : 2 = 10 + 16 : 2 = 10 + 8 = 18.

На этом все действия выполнены.

Можно встретить выражения, которые содержат скобки в скобках. Для их решения, нужно последовательно применять правило выполнения действий в выражениях со скобками. Удобнее всего начинать выполнение действий с внутренних скобок и продвигаться к внешним. Покажем на примере.

Пример 2. Выполнить действия в выражении: 9 + (5 + 1 + 4 * (2 + 3)).

Перед нами выражение со скобками. Это значит, что выполнение действий нужно начать с выражения в скобках, то есть, с 5 + 1 + 4 * (2 + 3). Но! Это выражение также содержит скобки, поэтому начнем сначала с действий в них:

Подставим найденное значение: 5 + 1 + 4 * 5. В этом выражении сначала выполняем умножение, затем — сложение:

5 + 1 + 4 * 5 = 5 + 1 + 20 = 26.

Исходное значение, после подстановки примет вид 9 + 26, и остается лишь выполнить сложение: 9 + 26 = 35.

Ответ: 9 + (5 + 1 + 4 * (2 + 3)) = 35.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если в выражение входят степени, корни, логарифмы, синус, косинус, тангенс и котангенс, а также другие функции — их значения нужно вычислить до выполнения остальных действий. При этом важно учитывать правила из предыдущих пунктов, которые задают очередность действий в математике.

Другими словами, перечисленные функции по степени важности можно приравнивать к выражению в скобках.

И, как всегда, рассмотрим, как это работает на примере.

В этом выражении есть степень 62. И нам нужно найти ее значение до выполнения остальных действий. Выполним возведение в степень: 62 = 36.

Подставляем полученное значение в исходное выражение:

Дальше нам уже все знакомо: выполняем действия в скобках, далее по порядку слева направо выполняем сначала умножение, деление, а затем — сложение и вычитание. Ход решения выглядит так:

У нас есть статья «знаки больше, меньше или равно», она может быть полезной для тебя!

Источник

Свойства степеней. Действия со степенями

что сначала умножение или возведение в степень

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n раз подряд»

a — основание степени;

n — показатель степени.

что сначала умножение или возведение в степень

Читается такое выражение, как a в степени n

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) само на себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:

2 — основание степени;

3 — показатель степени.

Если вам нужно быстро возвести число в степень, можно использовать наш онлайн-калькулятор. Но чтобы не упасть в грязь лицом на контрольной по математике, придется все-таки разобраться с теорией.

Рассмотрим пример из жизни, чтобы было понятно, для чего можно использовать возведение чисел в степень на практике.

Задачка про миллион: представьте, что у вас есть миллион рублей. В начале каждого года вы зарабатываете на нем еще два. Получается, что миллион каждый год утраивается. Был один, а стало три — и так каждый год. Здорово, правда? А теперь посчитаем, какая сумма у вас будет через 4 года.

Как решаем: один миллион умножаем на три (1·3), затем результат умножаем на три, потом еще на три. Наверное, вам уже стало стало скучно, потому что вы поняли, что три нужно умножить само на себя четыре раза. Так и сделаем:

Математики заскучали и решили все упростить:

Ответ: через четыре года у вас будет 81 миллион.

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Источник

Порядок выполнения действий, правила, примеры

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Порядок вычисления простых выражений

В случае выражений без скобок порядок действий определяется однозначно:

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Решение

17 − 5 · 6 : 3 − 2 + 4 : 2 = 17 − 10 − 2 + 2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

что сначала умножение или возведение в степень.

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Решение

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6

На этом вычисления можно закончить.

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Решение

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Решение

Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.

( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Источник

Правила умножения и деления степеней

Что представляют собой степенные выражения

Степенью n для числа а является произведение множителей, которые по величине равны а, взятое n раз.

здесь а представляет собой основание степени, n определяет ее показатель.

Таким образом, можно составить формулу:

Запись можно прочитать, как «a в степени n».

Степенное выражение представляет собой такое выражение, в состав которого входит степень.

Перед тем, как рассмотреть действия со степенными выражениями, полезно вспомнить свойства степени:

Правила умножения, что происходит

Если степени имеют одинаковые показатели, то в процессе их перемножения следует умножить между собой основания, а показатель записать без изменений:

где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.

В качестве примера решим несколько простых уравнений:

a 5 × b 5 = ( a × a × a × a × a ) × ( b × b × b × b × b ) = ( a × b ) n = ( a b ) × ( a b ) × ( a b ) × ( a b ) × ( a b ) = ( a b ) 5

3 5 × 4 5 = ( 3 × 4 ) 5 = 12 5 = 248832

16 a 2 = 4 2 × a 2 = ( 4 a ) 2

Когда требуется найти произведение степеней, которые обладают одинаковыми основаниями, следует сложить показатели степеней:

В качестве примеров рассмотрим несколько вычислений:

3 5 × 3 2 = 3 5 + 3 = 3 8 = 6561

2 8 × 8 1 = 2 8 · 2 3 = 2 11 = 2048

При умножении чисел, которые имеют разные степени, но схожи по основаниям, необходимо руководствоваться правилом, рассмотренным в предыдущем примере. То есть:

где а и b являются основаниями степени, n — это показатель степени в виде какого-либо натурального числа.

Бывают ситуации, когда числа отличаются по степеням и по основаниям, а также какое-то из оснований невозможно преобразовать в число с аналогичной степенью, как у второго числа. В этом случае нужно возвести в степень каждое число, а на втором шаге выполнить умножение.

3 3 × 5 2 = 27 × 25 = 675

Правила деления

Когда требуется выполнить деление степеней, которые имеют разные основания, но схожи по показателям, нужно найти разность показателей и оставить основание без изменений:

где а является основанием степени, n и m — это показатели степени в виде каких-либо натуральных чисел, m>n.

В качестве примеров рассмотрим несколько выражений:

Деление степеней, которые имеют одинаковые показатели, подразумевает возведение результата частного данных чисел в степень:

где а и b являются основаниями степени в виде любых рациональных чисел, не равных нулю, n — это показатель степени в виде какого-либо натурального числа.

5 12 ÷ 3 12 = ( 5 ÷ 3 ) 12 = ( 1 2 3 ) 12

Предположим, что требуется выполнить деление чисел со степенями. При этом степени не одинаковые, а основания идентичные. Тогда следует руководствоваться правилом, рассмотренным в предыдущем примере:

В том случае, когда отличаются не только степени, но и основания, необходимо возвести в степень каждое из чисел, а затем выполнить умножение. Например:

Примеры решения заданий для 7 класса

Воспользуемся правилом умножения степеней, имеющих одинаковое основание:

Воспользуемся правилом умножения степеней, имеющих одинаковое основание, чтобы избавиться от необходимости возводить число в большую степень:

2 7 = 2 3 × 2 4 = 8 × 16 = 128

Воспользуемся правилом умножения степеней, имеющих разные основания, но одинаковые показатели:

3 2 × 2 2 = ( 3 × 2 ) 2 = 6 2 = 36

Здесь можно применить правило деления степеней с одинаковым основанием и разными показателями:

Здесь можно применить правило деления степеней с одинаковым основанием и разными показателями:

Воспользуемся свойством деления степеней, когда основания отличаются, а показатели совпадают:

Источник

Степень с натуральным показателем

Что такое степень?

Степенью называют произведение из нескольких одинаковых множителей. Например:

Значение данного выражения равно 8

Левую часть этого равенства можно сделать короче – сначала записать повторяющийся множитель и указать над ним сколько раз он повторяется. Повторяющийся множитель в данном случае это 2. Повторяется он три раза. Поэтому над двойкой записываем тройку:

Это выражение читается так: « два в третьей степени равно восемь» или « третья степень числа 2 равна 8».

Короткую форму записи перемножения одинаковых множителей используют чаще. Поэтому надо помнить, что если над каким-то числом надписано другое число, то это есть перемножение нескольких одинаковых множителей.

А число, которое надписано над числом 5 называют показателем степени. В выражении 5 3 показателем степени является число 3. Показатель степени показывает сколько раз повторяется основание степени. В нашем случае основание 5 повторяется три раза

что сначала умножение или возведение в степень

Саму операцию перемножения одинаковых множителей называют возведением в степень.

Например, если нужно найти произведение из четырёх одинаковых множителей, каждый из которых равен 2, то говорят, что число 2 возводится в четвёртую степень:

что сначала умножение или возведение в степень

Видим, что число 2 в четвёртой степени есть число 16.

Отметим, что в данном уроке мы рассматриваем степени с натуральным показателем. Это вид степени, показателем которой является натуральное число. Напомним, что натуральными называют целые числа, которые больше нуля. Например, 1, 2, 3 и так далее.

Вообще, определение степени с натуральным показателем выглядит следующим образом:

что сначала умножение или возведение в степень

Примеры:

что сначала умножение или возведение в степень

Следует быть внимательным при возведении числа в степень. Часто по невнимательности человек умножает основание степени на показатель.

Например, число 5 во второй степени есть произведение двух множителей каждый из которых равен 5. Это произведение равно 25

что сначала умножение или возведение в степень

Теперь представим, что мы по невнимательности умножили основание 5 на показатель 2

что сначала умножение или возведение в степень

Получилась ошибка, поскольку число 5 во второй степени не равно 10.

Дополнительно следует упомянуть, что степень числа с показателем 1, есть само это число:

что сначала умножение или возведение в степень

Например, число 5 в первой степени есть само число 5

что сначала умножение или возведение в степень

Соответственно, если у числа отсутствует показатель, то надо считать, что показатель равен единице.

Например, числа 1, 2, 3 даны без показателя, поэтому их показатели будут равны единице. Каждое из этих чисел можно записать с показателем 1

что сначала умножение или возведение в степень

А если возвести 0 в какую-нибудь степень, то получится 0. Действительно, сколько бы раз ничего не умножалось на само себя получится ничего. Примеры:

что сначала умножение или возведение в степень

А выражение 0 0 не имеет смысла. Но в некоторых разделах математики, в частности анализе и теории множеств, выражение 0 0 может иметь смысл.

Для тренировки решим несколько примеров на возведение чисел в степени.

Пример 1. Возвести число 3 во вторую степень.

Число 3 во второй степени это произведение двух множителей, каждый из которых равен 3

Пример 2. Возвести число 2 в четвертую степень.

Число 2 в четвертой степени это произведение четырёх множителей, каждый из которых равен 2

2 4 =2 × 2 × 2 × 2 = 16

Пример 3. Возвести число 2 в третью степень.

Число 2 в третьей степени это произведение трёх множителей, каждый из которых равен 2

Возведение в степень числа 10

Чтобы возвести в степень число 10, достаточно дописать после единицы количество нулей, равное показателю степени.

Например, возведем число 10 во вторую степень. Сначала запишем само число 10 и в качестве показателя укажем число 2

Теперь ставим знак равенства, записываем единицу и после этой единицы записываем два нуля, поскольку количество нулей должно быть равно показателю степени

Значит, число 10 во второй степени это число 100. Связано это с тем, что число 10 во второй степени это произведение двух множителей, каждый из которых равен 10

Пример 2. Возведём число 10 в третью степень.

В данном случае после единицы будут стоять три нуля:

Пример 3. Возведем число 10 в четвёртую степень.

В данном случае после единицы будут стоять четыре нуля:

Пример 4. Возведем число 10 в первую степень.

В данном случае после единицы будет стоять один нуль:

Представление чисел 10, 100, 1000 в виде степени с основанием 10

Чтобы представить числа 10, 100, 1000 и 10000 в виде степени с основанием 10, нужно записать основание 10, и в качестве показателя указать число, равное количеству нулей исходного числа.

Представим число 10 в виде степени с основанием 10. Видим, что в нём один нуль. Значит, число 10 в виде степени с основанием 10 будет представлено как 10 1

Пример 2. Представим число 100 в виде степени основанием 10. Видим, что число 100 содержит два нуля. Значит, число 100 в виде степени с основанием 10 будет представлено как 10 2

Пример 3. Представим число 1 000 в виде степени с основанием 10.

Пример 4. Представим число 10 000 в виде степени с основанием 10.

Возведение в степень отрицательного числа

При возведении в степень отрицательного числа, его обязательно нужно заключить в скобки.

Например, возведём отрицательное число −2 во вторую степень. Число −2 во второй степени это произведение двух множителей, каждый из которых равен (−2)

Когда мы ставим перед положительным числом минус, мы тем самым выполняем операцию взятия противоположного значения.

Допустим, дано число 2, и нужно найти его противоположное число. Мы знаем, что противоположное числу 2 это число −2. Иными словами, чтобы найти противоположное число для 2, достаточно поставить минус перед этим числом. Вставка минуса перед числом уже считается в математике полноценной операцией. Эту операцию, как было указано выше, называют операцией взятия противоположного значения.

В случае с выражением −2 2 происходит две операции: операция взятия противоположного значения и возведение в степень. Возведение в степень является более приоритетной операцией, чем взятие противоположного значения.

Поэтому выражение −2 2 вычисляется в два этапа. Сначала выполняется операция возведения в степень. В данном случае во вторую степень было возведено положительное число 2

Затем выполнилось взятие противоположного значения. Это противоположное значение было найдено для значения 4. А противоположное значение для 4 это −4

Скобки же имеют самый высокий приоритет выполнения. Поэтому в случае вычисления выражения (−2) 2 сначала выполняется взятие противоположного значения, а затем во вторую степень возводится отрицательное число −2. В результате получается положительный ответ 4, поскольку произведение отрицательных чисел есть положительное число.

Пример 2. Возвести число −2 в третью степень.

Число −2 в третьей степени это произведение трёх множителей, каждый из которых равен (−2)

Пример 3. Возвести число −2 в четвёртую степень.

Число −2 в четвёртой степени это произведение четырёх множителей, каждый из которых равен (−2)

(−2) 4 = (−2) × (−2) × (−2) × (−2) = 16

Легко заметить, что при возведении в степень отрицательного числа может получиться либо положительный ответ либо отрицательный. Знак ответа зависит от показателя исходной степени.

Если показатель степени чётный, то ответ будет положительным. Если показатель степени нечётный, ответ будет отрицательным. Покажем это на примере числа −3

что сначала умножение или возведение в степень

В первом и в третьем случае показатель был нечётным числом, поэтому ответ стал отрицательным.

Во втором и в четвёртом случае показатель был чётным числом, поэтому ответ стал положительным.

Пример 7. Возвести число −5 в третью степень.

Число −5 в третьей степени это произведение трёх множителей каждый из которых равен −5. Показатель 3 является нечётным числом, поэтому мы заранее можем сказать, что ответ будет отрицательным:

Пример 8. Возвести число −4 в четвёртую степень.

Число −4 в четвёртой степени это произведение четырёх множителей, каждый из которых равен −4. При этом показатель 4 является чётным, поэтому мы заранее можем сказать, что ответ будет положительным:

(−4) 4 = (−4) × (−4) × (−4) × (−4) = 256

Нахождение значений выражений

При нахождении значений выражений, не содержащих скобки, возведение в степень будет выполняться в первую очередь, далее умножение и деление в порядке их следования, а затем сложение и вычитание в порядке их следования.

Пример 1. Найти значение выражения 2 + 5 2

Сначала выполняется возведение в степень. В данном случае во вторую степень возводится число 5 — получается 25. Затем этот результат складывается с числом 2

Пример 10. Найти значение выражения −6 2 × (−12)

Сначала выполняется возведение в степень. Заметим, что число −6 не взято в скобки, поэтому во вторую степень будет возведено число 6, затем перед результатом будет поставлен минус:

Завершаем пример, умножив −36 на (−12)

−6 2 × (−12) = −36 × (−12) = 432

Пример 11. Найти значение выражения −3 × 2 2

Сначала выполняется возведение в степень. Затем полученный результат перемножается с числом −3

Если выражение содержит скобки, то сначала нужно выполнить действия в этих скобках, далее возведение в степень, затем умножение и деление, а затем сложение и вычитание.

Пример 12. Найти значение выражения (3 2 + 1 × 3) − 15 + 5

что сначала умножение или возведение в степень

(3 2 + 1 × 3) − 15 + 5 = 12 − 15 + 5 = 2

Пример 13. Найти значение выражения 2 × 5 3 + 5 × 2 3

Сначала возведем числа в степени, затем выполним умножение и сложим полученные результаты:

2 × 5 3 + 5 × 2 3 = 2 × 125 + 5 × 8 = 250 + 40 = 290

Тождественные преобразования степеней

Над степенями можно выполнять различные тождественные преобразования, тем самым упрощая их.

(2 3 ) 2 это произведение двух степеней, каждая из которых равна 2 3

что сначала умножение или возведение в степень

При этом каждая из этих степеней является произведением трёх множителей, каждый из которых равен 2

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Этот пример можно значительно упростить. Для этого показатели выражения (2 3 ) 2 можно перемножить и записать это произведение над основанием 2

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

После перемножения показателей, получится другая степень, значение которой можно найти.

Пример 2. Найти значение выражения (3 2 ) 2

В данном примере основанием является 3, а числа 2 и 2 являются показателями. Воспользуемся правилом возведения степени в степень. Основание оставим без изменений, а показатели перемножим:

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Рассмотрим остальные преобразования.

Умножение степеней

Чтобы перемножить степени, нужно по отдельности вычислить каждую степень, и полученные результаты перемножить.

2 2 × 3 3 = 4 × 27 = 108

В этом примере основания степеней были разными. В случае, если основания будут одинаковыми, то можно записать одно основание, а в качестве показателя записать сумму показателей исходных степеней.

Например, умножим 2 2 на 2 3

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Вообще, для любого a и показателей m и n выполняется следующее равенство:

что сначала умножение или возведение в степень

Отметим, что данное преобразование можно применять при любом количестве степеней. Главное, чтобы основание было одинаковым.

что сначала умножение или возведение в степень

В некоторых задачах достаточным бывает выполнить соответствующее преобразование, не вычисляя итоговую степень. Это конечно же очень удобно, поскольку вычислять большие степени не так-то просто.

Пример 1. Представить в виде степени выражение 5 8 × 25

В данной задаче нужно сделать так, чтобы вместо выражения 5 8 × 25 получилась одна степень.

что сначала умножение или возведение в степень

В этом выражении можно применить основное свойство степени — основание 5 оставить без изменений, а показатели 8 и 2 сложить:

что сначала умножение или возведение в степень

Запишем решение покороче:

что сначала умножение или возведение в степень

Пример 2. Представить в виде степени выражение 2 9 × 32

что сначала умножение или возведение в степень

Все хорошо знают, что три умножить на три равно девять, но задача требует в ходе решения воспользоваться основным свойством степени. Как это сделать?

Вспоминаем, что если число дано без показателя, то показатель нужно считать равным единице. Стало быть сомножители 3 и 3 можно записать в виде 3 1 и 3 1

Теперь воспользуемся основным свойством степени. Основание 3 оставляем без изменений, а показатели 1 и 1 складываем:

Далее вычисляем значение выражения. Число 3 во второй степени равно числу 9

что сначала умножение или возведение в степень

Далее вычисляем значение каждой степени и находим произведение:

что сначала умножение или возведение в степень

Пример 5. Выполнить умножение x × x

Это два одинаковых буквенных сомножителя с показателями 1. Для наглядности запишем эти показатели. Далее основание x оставим без изменений, а показатели сложим:

что сначала умножение или возведение в степень

Находясь у доски, не следует записывать перемножение степеней с одинаковыми основаниями так подробно, как это сделано здесь. Такие вычисления нужно выполнять в уме. Подробная запись скорее всего будет раздражать учителя и он снизит за это оценку. Здесь же подробная запись дана, чтобы материал был максимально доступным для понимания.

Решение данного примера желательно записать так:

что сначала умножение или возведение в степень

Пример 6. Выполнить умножение x 2 × x

Показатель второго сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

что сначала умножение или возведение в степень

Пример 7. Выполнить умножение y 3 y 2 y

Показатель третьего сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

что сначала умножение или возведение в степень

Пример 8. Выполнить умножение aa 3 a 2 a 5

Показатель первого сомножителя равен единице. Для наглядности запишем его. Далее основание оставим без изменений, а показатели сложим:

что сначала умножение или возведение в степень

Пример 9. Представить степень 3 8 в виде произведения степеней с одинаковыми основаниями.

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Представление степени в виде произведения степеней с одинаковыми основаниями это по большей части творческая работа. Поэтому не нужно бояться экспериментировать.

что сначала умножение или возведение в степень

Конструкции с суммами показателей были записаны для наглядности. Чаще всего их можно пропустить. Тогда получится компактное решение:

что сначала умножение или возведение в степень

Возведение в степень произведения

Чтобы возвести в степень произведение, нужно возвести в указанную степень каждый множитель этого произведения и перемножить полученные результаты.

что сначала умножение или возведение в степень

Теперь возведём во вторую степень каждый множитель произведения 2 × 3 и перемножим полученные результаты:

что сначала умножение или возведение в степень

Принцип работы данного правила основан на определении степени, которое было дано в самом начале.

Возвести произведение 2 × 3 во вторую степень означает повторить данное произведение два раза. А если повторить его два раза, то можно получить следующее:

От перестановки мест сомножителей произведение не меняется. Это позволяет сгруппировать одинаковые множители:

что сначала умножение или возведение в степень

Данное свойство справедливо для любого количества множителей. Следующие выражения также справедливы:

что сначала умножение или возведение в степень

Пример 2. Найти значение выражения (2 × 3 × 4) 2

что сначала умножение или возведение в степень

Пример 3. Возвести в третью степень произведение a × b × c

Заключим в скобки данное произведение, и в качестве показателя укажем число 3

что сначала умножение или возведение в степень

Далее возводим в третью степень каждый множитель данного произведения:

что сначала умножение или возведение в степень

Пример 4. Возвести в третью степень произведение 3xyz

Заключим в скобки данное произведение, и в качестве показателя укажем 3

Возведём в третью степень каждый множитель данного произведения:

В некоторых примерах умножение степеней с одинаковыми показателями можно заменять на произведение оснований с одним показателем.

5 2 × 3 2 = 25 × 9 = 225

5 2 × 3 2 = (5 × 3) 2 = (15) 2 = 225

Возведение степени в степень

Это преобразование мы рассматривали в качестве примера, когда пытались понять суть тождественных преобразований степеней.

При возведении степени в степень основание оставляют без изменений, а показатели перемножают:

К примеру, выражение (2 3 ) 2 является возведением степени в степень — два в третьей степени возводится во вторую степень. Чтобы найти значение этого выражения, основание можно оставить без изменений, а показатели перемножить:

(2 3 ) 2 = 2 3 × 2 = 2 6

(2 3 ) 2 = 2 3 × 2 = 2 6 = 64

Данное правило основано на предыдущих правилах: возведении в степень произведения и основного свойства степени.

А это есть возведение в степень произведения, которое мы изучили ранее. Напомним, что для возведения в степень произведения, нужно возвести в указанную степень каждый множитель данного произведения и полученные результаты перемножить:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2

Теперь имеем дело с основным свойством степени. Основание оставляем без изменений, а показатели складываем:

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6

(2 × 2 × 2) 2 = 2 2 × 2 2 × 2 2 = 2 2 + 2 + 2 = 2 6 = 64

В степень также может возводиться произведение, сомножители которого тоже являются степенями.

(2 2 × 3 2 ) 3 = 2 2×3 × 3 2×3 = 2 6 × 3 6 = 64 × 729 = 46656

Примерно тоже самое происходит при возведении в степени произведения. Мы говорили, что при возведении в степень произведения, в указанную степень возводится каждый множитель этого произведения.

Например, чтобы возвести произведение 2 × 4 в третью степень, нужно записать следующее выражение:

что сначала умножение или возведение в степень

Перепишем решение с помощью правила возведения степени в степень. У нас должен получиться тот же результат:

что сначала умножение или возведение в степень

Пример 2. Найти значение выражения (3 3 ) 2

Основание оставляем без изменений, а показатели перемножаем:

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Пример 3. Выполнить возведение в степень в выражении (xy

Возведём в третью степень каждый множитель произведения:

что сначала умножение или возведение в степень

Пример 4. Выполнить возведение в степень в выражении (abc)⁵

Возведём в пятую степень каждый множитель произведения:

что сначала умножение или возведение в степень

Пример 5. Выполнить возведение в степень в выражении (−2ax) 3

Возведём в третью степень каждый множитель произведения:

что сначала умножение или возведение в степень

Поскольку в третью степень возводилось отрицательное число −2, оно было взято в скобки.

что сначала умножение или возведение в степень

Пример 6. Выполнить возведение в степень в выражении (10xy) 2

что сначала умножение или возведение в степень

Пример 7. Выполнить возведение в степень в выражении (−5x) 3

что сначала умножение или возведение в степень

Пример 8. Выполнить возведение в степень в выражении (−3y) 4

что сначала умножение или возведение в степень

Пример 9. Выполнить возведение в степень в выражении (−2abx)⁴

что сначала умножение или возведение в степень

Пример 10. Упростите выражение x 5 × (x 2 ) 3

Степень x 5 пока оставим без изменений, а в выражении (x 2 ) 3 выполним возведение степени в степени:

Основное свойство степени можно использовать в случае, если основания исходных степеней одинаковы. В данном примере основания разные, поэтому для начала исходное выражение нужно немного видоизменить, а именно сделать так, чтобы основания степеней стали одинаковыми.

Запишем решение данного примера:

что сначала умножение или возведение в степень

Деление степеней

Чтобы выполнить деление степеней, нужно найти значение каждой степени, затем выполнить деление обыкновенных чисел.

что сначала умножение или возведение в степень

Если при делении степеней основания окажутся одинаковыми, то основание можно оставить без изменений, а из показателя степени делимого вычесть показатель степени делителя.

Например, найдем значение выражения 2 3 : 2 2

Основание 2 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

что сначала умножение или возведение в степень

Данное свойство основано на умножении степеней с одинаковыми основаниями, или как мы привыкли говорить на основном свойстве степени.

Разделить одно число на другое означает найти такое число, которое при умножении на делитель даст в результате делимое.

что сначала умножение или возведение в степень

Таким образом, при делении степеней с одинаковыми основаниями выполняется следующее равенство:

что сначала умножение или возведение в степень

Может случиться и так, что одинаковыми могут оказаться не только основания, но и показатели. В этом случае в ответе получится единица.

что сначала умножение или возведение в степень

При решении примера 2 2 : 2 2 также можно применить правило деления степеней с одинаковыми основаниями. В результате получается число в нулевой степени, поскольку разность показателей степеней 2 2 и 2 2 равна нулю:

что сначала умножение или возведение в степень

В математике принято считать, что любое число в нулевой степени есть единица:

что сначала умножение или возведение в степень

Почему число 2 в нулевой степени равно единице мы выяснили выше. Если вычислить 2 2 : 2 2 обычным методом, не используя правило деления степеней, получится единица.

Пример 2. Найти значение выражения 4 12 : 4 10

Воспользуемся правилом деления степеней. Основание 4 оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

4 12 : 4 10 = 4 12 − 10 = 4 2 = 16

Пример 3. Представить частное x 3 : x в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя. Показатель делителя равен единице. Для наглядности запишем его:

что сначала умножение или возведение в степень

Пример 4. Представить частное x 3 : x 2 в виде степени с основанием x

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

что сначала умножение или возведение в степень

Деление степеней можно записывать в виде дроби. Так, предыдущий пример можно записать следующим образом:

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Деление степеней подробно можно не расписывать. Приведённое сокращение можно выполнить короче:

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Пример 5. Выполнить деление x 12 : x 3

Воспользуемся правилом деления степеней. Основание x оставим без изменений, а из показателя степени делимого вычтем показатель степени делителя:

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Пример 6. Найти значение выражения что сначала умножение или возведение в степень

В числителе выполним умножение степеней с одинаковыми основаниями:

что сначала умножение или возведение в степень

Теперь применяем правило деления степеней с одинаковыми основаниями. Основание 7 оставляем без изменений, а из показателя степени делимого вычтем показатель степени делителя:

что сначала умножение или возведение в степень

Завершаем пример, вычислив степень 7 2

что сначала умножение или возведение в степень

Пример 7. Найти значение выражения что сначала умножение или возведение в степень

Выполним в числителе возведение степени в степень. Сделать это нужно с выражением (2 3 ) 4

что сначала умножение или возведение в степень

Теперь выполним в числителе умножение степеней с одинаковыми основаниями:

что сначала умножение или возведение в степень

Теперь применяем правило деления степеней с одинаковыми основаниями:

что сначала умножение или возведение в степень

Значит, значение выражения что сначала умножение или возведение в степеньравно 16

В некоторых примерах можно сокращать одинаковые множители в ходе решения. Это позволяет упростить выражение и само вычисление в целом.

что сначала умножение или возведение в степень

В числителе выполним возведение степени в степень. Сделать это нужно с выражением (2 2 ) 3

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Пример 8. Найти значение выражения что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Теперь можно применить правило деления степеней:

что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Возведение в степень обыкновенных дробей

Чтобы возвести в степень обыкновенную дробь, нужно возвести в указанную степень числитель и знаменатель этой дроби.

Например, возведём обыкновенную дробь во вторую степень. Возьмём в скобки данную дробь и в качестве показателя укажем 2

что сначала умножение или возведение в степень

Итак, чтобы вычислить значение выражения что сначала умножение или возведение в степень, нужно возвести во вторую степень числитель и знаменатель данной дроби:

что сначала умножение или возведение в степень

Получили дробь в числителе и в знаменателе которой содержатся степени. Вычислим каждую степень по отдельности

что сначала умножение или возведение в степень

Значит обыкновенная дробь во второй степени равна дроби что сначала умножение или возведение в степень.

Приведённое правило работает следующим образом. Дробь во второй степень это произведение двух дробей, каждая из которых равна

что сначала умножение или возведение в степень

Мы помним, что для перемножения дробей необходимо перемножить их числители и знаменатели:

что сначала умножение или возведение в степень

А поскольку в числителе и в знаменателе происходит перемножение одинаковых множителей, то выражения 2 × 2 и 3 × 3 можно заменить на 2 2 и 3 2 соответственно:

что сначала умножение или возведение в степень

Откуда и получится ответ что сначала умножение или возведение в степень.

Вообще, для любого a и b ≠ 0 выполняется следующее равенство:

что сначала умножение или возведение в степень

Это тождественное преобразование называют возведением в степень обыкновенной дроби.

Пример 2. Возвести дробь что сначала умножение или возведение в степеньв третью степень

Заключим данную дробь в скобки и в качестве показателя укажем число 3. Далее возведём числитель и знаменатель данной дроби в третью степень и вычислим получившуюся дробь:

что сначала умножение или возведение в степень

Отрицательная дробь возводится в степень таким же образом, но перед вычислениями надо определиться какой знак будет иметь ответ. Если показатель четный, то ответ будет положительным. Если показатель нечетный, то ответ будет отрицательным.

Например, возведём дробь что сначала умножение или возведение в степеньво вторую степень:

что сначала умножение или возведение в степень

Показатель является чётным числом. Значит ответ будет положительным. Далее применяем правило возведения в степень дроби и вычисляем получившуюся дробь:

что сначала умножение или возведение в степень

Ответ положителен по причине того, что выражение что сначала умножение или возведение в степеньпредставляет собой произведение двух сомножителей, каждый из которых равен дроби что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

А произведение отрицательных чисел (в том числе и рациональных) есть положительное число:

что сначала умножение или возведение в степень

Если возводить дробь что сначала умножение или возведение в степеньв третью степень, то ответ будет отрицательным, поскольку в данном случае показатель будет нечётным числом. Правило возведения в степень остаётся тем же, но перед выполнением этого возведения, нужно будет поставить минус:

что сначала умножение или возведение в степень

Здесь ответ отрицателем по причине того, что выражение что сначала умножение или возведение в степеньпредставляет собой произведение трёх множителей, каждый из которых равен дроби что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Сначала перемножили что сначала умножение или возведение в степеньи что сначала умножение или возведение в степень, получили что сначала умножение или возведение в степень, но затем умножив что сначала умножение или возведение в степеньна что сначала умножение или возведение в степеньмы получим отрицательный ответ что сначала умножение или возведение в степень

что сначала умножение или возведение в степень

Пример 3. Найти значение выражения что сначала умножение или возведение в степень

Выполним возведение в степень обыкновенной дроби:

что сначала умножение или возведение в степень

Далее вычислим значение получившегося выражения:

что сначала умножение или возведение в степень

Возведение в степень десятичных дробей

При возведении в степень десятичной дроби её необходимо заключить в скобки. Например, возведём во вторую степень десятичную дробь 1,5

что сначала умножение или возведение в степень

Допускается переводить десятичную дробь в обыкновенную и возводить в степень эту обыкновенную дробь. Решим предыдущий пример, переведя десятичную дробь в обыкновенную:

что сначала умножение или возведение в степень

Пример 2. Найти значение степени (−1,5) 3

Показатель степени является нечётным числом. Значит ответ будет отрицательным

что сначала умножение или возведение в степень

Пример 3. Найти значение степени (−2,4) 2

Показатель степени является чётным числом. Значит ответ будет положительным:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *