Символ что значит в информатике

Символы в информатике

Вы будете перенаправлены на Автор24

Символы в информатике — это знаки, которые имеют собственное содержание, и в то же время могут в общем виде иметь некоторый другой смысл.

Символы: сущность, применение в информатике

Символ представляет собой графическое представление некоего знака. Символ может быть изображён с некоторыми отличиями, к примеру, разные люди, с разным почерком могут по-разному написать букву «Б». Компьютерные программы тоже могут в разных вариациях изображать одну и ту же букву в зависимости от установленного шрифта, но это по-прежнему будет всё тот же символ. Однако есть и другая сторона медали, различные по смыслу символы могут иметь одинаковое изображение, но отличаться по сути. Например, две буквы «А», но одна принадлежит русскому алфавиту, а другая латинскому. При одинаковом внешнем виде, они считаются различными символами.

К разряду символов относятся помимо букв (прописных и строчных, русских или латинских) также и цифровые символы, знаки препинания, специальные символы и, кроме всего прочего, символ пробела между слов. Вся текстовая информация составлена из символики, но методы сохранения текста в памяти компьютера не зависят непосредственно от изображения данной текстуры. Символы в памяти заменяет их нумерация, то есть цифровое кодирование, а внешнее изображение символа с конкретным кодом на мониторе, связано с применяемым для отображения символов шрифтом. Естественно, что должна быть единообразная система кодировки символов, чтобы закодированные на одном компьютере тексты были доступны для чтения на другом. Общепринятой системой числового кодирования является байтовая система кодировки одного символа. Один байт состоит из восьми битов и это позволяет получить 256 вариантов кодовых значений, то есть можно закодировать 256 разных символов. Этого количества вполне хватает для отображения всех символов латинского алфавита, цифровых символов и всех остальных знаков.

Готовые работы на аналогичную тему

Существует единый стандарт ASCII, в котором указано соответствие конкретных символов и х кодовому обозначению. Кодовая таблица ASCII является семи битной и содержит символы, которые кодируются значениями от нуля до ста двадцати семи. Ниже приведена таблица ASCII:

Символ что значит в информатике

Рисунок 1. Таблица стандартных ASCII символов. Автор24 — интернет-биржа студенческих работ

Эта таблица не содержит букв русского алфавита, как и букв алфавитов многих других стран. Сначала для изображения символов других алфавитов применяли оставшуюся половину свободных кодов, то есть от 128 до 255. Но это породило много новых проблем, так как сто двадцать восемь вариантов было слишком мало для отображения букв алфавитов всех оставшихся стран. Их не хватало даже для одного китайского. По этой причине был разработан новый стандарт Unicode, который в версии 6.0, выпущенной в октябре две тысячи десятого года, состоит из 109000 разнообразных символьных обозначений. Понятно, что в системе кодирования Unicode, не хватит одного байта на каждый символ, поэтому там применяются коды, состоящие из нескольких байт.

Непечатные символы

Следует отметить факт, все текстовые символы обладают своим числовым кодом, однако не каждый код обладает символикой, которая может быть изображена на дисплее. Имеются ввиду специальные коды управления, у которых значения менее двадцати в шестнадцатиричной системе счисления, то есть это число тридцать два в десятичной системе. При пересылке таких кодов, на экране не отображаются никакие знаки, просто выполняются закодированные операции управления. Например, код ноль семь означает срабатывание звукового сигнала, а кодировка 0С очищает экран монитора. Особняком стоят коды 0A16 и 0D16. Первый означает команду перемещения в следующую строку, но не меняет позицию, второй код вызывает возврат к началу текущей строки. То есть, чтобы выполнить перемещение на начало новой строки, нужны два этих кода. В каждом тексте эти коды идут «неразлучной парой» в конце каждой строки. В различных операционных системах существуют разные коды конца строки. Например, в системе Windows для этой цели применяются два подряд символа, кодируемые как 13 и 10, в GNU/Linux требуется один символ с кодом 10, а в MacOS — один символ с кодом 13. Термины «возврат каретки» и «перевод строки» исторически произошли от давно ушедших в невозвратное прошлое пишущих машинок.

Чтобы ввести какой-либо символ в системе Windows по имеющемуся в наличии его десятичному коду, нужно, удерживая клавишу Alt, набрать его числовой код.

Математические символы

Символьная таблица даёт возможность ввести в текстовый документ математические и специальные символы, разные знаки, которых нет на клавиатуре компьютера. Но не все программы способны работать с такой таблицей. Чтобы вставить в текст специальный или математический символ нужно поставить курсор в нужное место, а затем зайти в меню Пуск, Все программы, Стандартные, Служебные и там сделать выбор Таблица символов. Появится приведённая ниже таблица, где можно найти нужный символ.

Символ что значит в информатике

Рисунок 2. Математические символы. Автор24 — интернет-биржа студенческих работ

Источник

Презентация по информатике «Знаки и знаковые системы»

Онлайн-конференция

«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»

Свидетельство и скидка на обучение каждому участнику

Символ что значит в информатике

Описание презентации по отдельным слайдам:

Знаки: форма и значение. Знаковые системы Выполнила: учитель информатики Губина С.Н. МОУ «СОШ №17»

Знаки С древних времен знаки используются человеком для долговременного хранения информации и ее передачи на большие расстояния.

Форма знаков зрительные аудиальные вкусовые обонятельные тактильные

Зрительные знаки буквы и цифры, которые используются в письменной речи, знаки химических элементов, музыкальные ноты, дорожные знаки и т. д.

Аудиальные знаки звуки, которые используются в устной речи звонок на урок звон колокола звук сирены

Осязательные знаки Азбука Брайля Рукопожатие

Животные для общения используют и обонятельные знаки. Запах служит для того, чтобы объявить о своем праве на территорию. Обонятельные знаки

Иконические знаки Иконические знаки позволяют догадаться об их смысле, так как имеют форму, похожую на отображаемый объект. Мой компьютер Корзина

Дополнительная информация Один и тот же символ может иметь различное значение в разных знаковых системах. Например, знак «О» используется в качестве: буквы «О» в русском алфавите; буквы «О» [оu] в английском алфавите; цифры 0 (ноль) в системах счисления; символа химического элемента «О» (кислорода) в таблице Д. И. Менделеева.

Один символ может иметь несколько значений А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я A B C D E F G H I K L M N O P Q R S T V X Y О

Язык жестов Естественные языки языки

Формальный язык — это такой язык, в котором одинаковые сочетания знаков всегда имеют одинаковый смысл, характеризующийся точными правилами построения выражений и их понимания. Формальные языки Десятичная система счисления

Формальные языки Язык алгебры Двоичная система счисления 2+4=6 2x+4y=62 Система дорожных знаков Нотная грамота

Азбука Морзе Флажковая азбука Семафорная азбука

Генетический алфавит Генетический алфавит является «азбукой», с помощью которой строится единая система хранения и передачи наследственной информации живыми организмами.

Спасибо за внимание!

Символ что значит в информатике

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

Символ что значит в информатике

Курс профессиональной переподготовки

Информатика: теория и методика преподавания в образовательной организации

Символ что значит в информатике

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

Ищем педагогов в команду «Инфоурок»

Символ что значит в информатике

Номер материала: ДВ-003229

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Символ что значит в информатике

Апробацию новых учебников по ОБЖ завершат к середине 2022 года

Время чтения: 1 минута

Символ что значит в информатике

Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст

Время чтения: 1 минута

Символ что значит в информатике

Исследования вакцины для детей младше 12 лет начнутся с 2022 года

Время чтения: 1 минута

Символ что значит в информатике

Путин поручил не считать выплаты за классное руководство в средней зарплате

Время чтения: 1 минута

Символ что значит в информатике

ВПР для школьников в 2022 году пройдут весной

Время чтения: 1 минута

Символ что значит в информатике

Во Франции планируют ввести уголовное наказание за буллинг в школе

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Что значит / этот знак в информатике

слэш
Применение слеша
В Интернете. Слеш используется в адресах Интернет-ресурсов: имя любого сайта начинается с «http://» или «https://». В зависимости от вложенности страницы слешей будет больше (http://site.ru/category/category2/. ), так как знак / является разделителем в адресе.

В русском языке. Слеш заменяет предлоги «и», «или», а также обозначает единое сложное понятие, например: проблема конструктивных/деструктивных конфликтов, с целью покупки/продажи. Еще данный символ применяется при обозначениях каких-либо величин и их соотношений, как в полной, так и сокращенной формах, например: доллар/рубль, центнер/гектар, килограмм/метр.

В математике. Косая черта обозначает операцию деления и по значению приравнивается к двоеточию и горизонтальной черте.

Используется слеш в этом значении в основном в компьютерных программах, например, в Excel.

Другие сферы применения. Еще слеш используется в программировании, а также является служебным типографским знаком и применяется при указании ссылок на литературные источники, разбиении текста на строки (цитировании стихов), обозначении дат.

Где используют бэкслеш
В математике. Обратная косая черта означает разность множеств. Например, A\B на языке математики значит множество элементов, которые не входят в В, но входят в А.

В системе Windows. Бекслеш употребляется при разделении каталогов, именно поэтому такой символ нельзя использовать в названиях файлов.

Например, путь в системе D:\Фото\2015\Прогулка означает, что нужно открыть папку «Прогулка», которая находится в папке «2015», а та, в свою очередь, в «Фото» на диске D.

Источник

Информатика. 7 класс

Конспект урока

Единицы измерения информации

Перечень вопросов, рассматриваемых в теме:

Каждый символ информационного сообщения несёт фиксированное количество информации.

Единицей измерения количества информации является бит – это наименьшаяединица.

1 Кб (килобайт) = 1024 байта= 2 10 байтов

1 Мб (мегабайт) = 1024 Кб = 2 10 Кб

1 Гб (гигабайт) = 1024 Мб = 2 10 Мб

1 Тб (терабайт) =1024 Гб = 2 10 Гб

Формулы, которые используются при решении типовых задач:

Информационный объём сообщения определяется по формуле:

I – объём информации в сообщении;

К – количество символов в сообщении;

i – информационный вес одного символа.

Теоретический материал для самостоятельного изучения.

Любое сообщение несёт некоторое количество информации. Как же его измерить?

Одним из способов измерения информации является алфавитный подход, который говорит о том, что каждый символ любого сообщения имеет определённый информационный вес, то есть несёт фиксированное количество информации.

Сегодня на уроке мы узнаем, чему равен информационный вес одного символа и научимся определять информационный объём сообщения.

Что же такое символ в компьютере? Символом в компьютере является любая буква, цифра, знак препинания, специальный символ и прочее, что можно ввести с помощью клавиатуры. Но компьютер не понимает человеческий язык, он каждый символ кодирует. Вся информация в компьютере представляется в виде нулей и единичек. И вот эти нули и единички называются битом.

Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется один бит.

Эту формулу можно применять для вычисления информационного веса одного символа любого произвольного алфавита.

Алфавит древнего племени содержит 16 символов. Определите информационный вес одного символа этого алфавита.

Составим краткую запись условия задачи и решим её:

Информационный вес одного символа этого алфавита составляет 4 бита.

Сообщение состоит из множества символов, каждый из которых имеет свой информационный вес. Поэтому, чтобы вычислить объём информации всего сообщения, нужно количество символов, имеющихся в сообщении, умножить на информационный вес одного символа.

Математически это произведение записывается так: I = К · i.

Например: сообщение, записанное буквами 32-символьного алфавита, содержит 180 символов. Какое количество информации оно несёт?

I = 180 · 5 = 900 бит.

Итак, информационный вес всего сообщения равен 900 бит.

В алфавитном подходе не учитывается содержание самого сообщения. Чтобы вычислить объём содержания в сообщении, нужно знать количество символов в сообщении, информационный вес одного символа и мощность алфавита. То есть, чтобы определить информационный вес сообщения: «сегодня хорошая погода», нужно сосчитать количество символов в этом сообщении и умножить это число на восемь.

I = 23 · 8 = 184 бита.

Значит, сообщение весит 184 бита.

Как и в математике, в информатике тоже есть кратные единицы измерения информации. Так, величина равная восьми битам, называется байтом.

Бит и байт – это мелкие единицы измерения. На практике для измерения информационных объёмов используют более крупные единицы: килобайт, мегабайт, гигабайт и другие.

1 Кб (килобайт) = 1024 байта= 2 10 байтов

1 Мб (мегабайт) = 1024 Кб = 2 10 Кб

1 Гб (гигабайт) = 1024 Мб = 2 10 Мб

1 Тб (терабайт) =1024 Гб = 2 10 Гб

Итак, сегодня мы узнали, что собой представляет алфавитный подход к измерению информации, выяснили, в каких единицах измеряется информация и научились определять информационный вес одного символа и информационный объём сообщения.

Материал для углубленного изучения темы.

Как текстовая информация выглядит в памяти компьютера.

Набирая текст на клавиатуре, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111. Теперь возникает вопрос, какой именно восьмизначный двоичный код поставить в соответствие каждому символу?

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код ‑ просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для разных типов компьютеров используются различные таблицы кодировки.

Таблица ASCII (или Аски), стала международным стандартом для персональных компьютеров. Она имеет две части.

Символ что значит в информатике

В этой таблице латинские буквы (прописные и строчные) располагаются в алфавитном порядке. Расположение цифр также упорядочено по возрастанию значений. Это правило соблюдается и в других таблицах кодировки и называется принципом последовательного кодирования алфавитов. Благодаря этому понятие «алфавитный порядок» сохраняется и в машинном представлении символьной информации. Для русского алфавита принцип последовательного кодирования соблюдается не всегда.

Запишем, например, внутреннее представление слова «file». В памяти компьютера оно займет 4 байта со следующим содержанием:

01100110 01101001 01101100 01100101.

А теперь попробуем решить обратную задачу. Какое слово записано следующим двоичным кодом:

01100100 01101001 01110011 01101011?

В таблице 2 приведен один из вариантов второй половины кодовой таблицы АSСII, который называется альтернативной кодировкой. Видно, что в ней для букв русского алфавита соблюдается принцип последовательного кодирования.

Символ что значит в информатике

Вывод: все тексты вводятся в память компьютера с помощью клавиатуры. На клавишах написаны привычные для нас буквы, цифры, знаки препинания и другие символы. В оперативную память они попадают в форме двоичного кода.

Из памяти же компьютера текст может быть выведен на экран или на печать в символьной форме.

Сейчас используют целых пять систем кодировок русского алфавита (КОИ8-Р, Windows, MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид. Поэтому, всегда нужно уточнять, какая система кодирования установлена на компьютере.

Разбор решения заданий тренировочного модуля

№1. Определите информационный вес символа в сообщении, если мощность алфавита равна 32?

№2. Выразите в килобайтах 2 16 байтов.

2 6 = 64, а 2 10 байт – это 1 Кб. Значит, 64 · 1 = 64 Кб.

№3. Тип задания: выделение цветом

8 х = 32 Кб, найдите х.

Источник

Логические выражения

Теория к заданию 23 из ЕГЭ по информатике

Алгебра логики

Алгебра логики

Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.

Основоположником алгебры логики является английский математик и логик Дж. Буль (1815–1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.

Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.

Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.

Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».

Кроме двузначной алгебры высказываний, в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.

В алгебре логики различаются простые (элементарные) высказывания, обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то». Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.

Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».

Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.

Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.

Основные операции алгебры логики

1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А), которое называется отрицанием исходного высказывания, обозначается символически чертой сверху ($A↖<->$) или такими условными обозначениями, как ¬, ‘not’, и читается: «не А», «А ложно», «неверно, что А», «отрицание А». Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖<->$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B ) истинно.

Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид

A¬A
истиналожь
ложьистина

Символ что значит в информатике

2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В»), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В, а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.

Таблица истинности операции имеет вид

ABA ∧ B
истиналожьложь
ложьистиналожь
ложьложьложь
истинаистинаистина
ABA ∧ B
100
010
000
111

Высказывание АВ истинно только тогда, когда оба высказывания — А и В истинны.

Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то АВ есть пересечение множеств А и В.

Символ что значит в информатике

3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В»), которая символически обозначается с помощью знака ∨ В) и читается: «А или В». Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B. Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.

Таблица истинности операции имеет вид

ABAB
истиналожьистина
ложьистинаистина
ложьложьложь
истинаистинаистина
ABAB
101
011
000
111

Высказывание АВ ложно только тогда, когда оба высказывания — А и В ложны.

Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то АВ — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.

Символ что значит в информатике

4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или», употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, АВ) и читается: «либо А, либо В». Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.

Таблица истинности операции имеет вид

АВАB
истиналожьистина
ложьистинаистина
ложьложьложь
истинаистиналожь
АВАB
101
011
000
110

Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.

5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если. то» в сложное высказывание, которое символически обозначается с помощью знака → (АВ) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В». Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.

Таблица истинности операции имеет вид

АВАВ
истиналожьложь
ложьистинаистина
ложьложьистина
истинаистинаистина
АВАВ
100
011
001
111

Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.

6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В, которое читается: «А эквивалентно B». Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно». Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».

Таблица истинности операции эквивалентности имеет вид

АВАВ
истиналожьложь
ложьистиналожь
ложьложьистина
истинаистинаистина
АВАВ
100
010
001
111

Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.

Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.

Сложение по модулю дваА ⊕ В$(A↖ <->∧B) ∧ (A ∧ B↖<->)$
ИмпликацияА → В$A↖ <->∨ B$
ЭквивалентностьА ∼ В$(A↖ <->∧ B↖<->) ∨ (A ∧ B)$

Приоритет выполнения логических операций следующий: отрицание («не») имеет самый высокий приоритет, затем выполняется конъюнкция («и»), после конъюнкции — дизъюнкция («или»).

С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А), то вторник всегда наступает после понедельника (В)» — импликация АВ, и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.

Рассмотрим, например, построение составного высказывания из высказываний А и В, которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.

Примеры решения задач

Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.

Решение. Рассмотрим последовательно все предложенные слова:

1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;

3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;

4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;

5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.

Логические выражения и их преобразование

Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:

Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:

В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.

Пример. Найти значение выражения:

Решение. Порядок подсчета значений:

1) b a + a b > a + b, после подстановки получим: 3 2 + 2 3 > 2 + 3, т. е. 17 > 2 + 3 = истина;

2) A ∧ B = истина ∧ ложь = ложь.

Следовательно, выражение в скобках равно (b a + a b > a + b ∨ A ∧ B) = истина ∨ ложь = истина;

3) 1≤ a = 1 ≤ 2 = истина;

Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным.

Построение таблиц истинности логических выражений

Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).

Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.

Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.

1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.

Алгоритм построения ДНФ следующий:

Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид

X1X2F(X1, X2)
111
010
100
001

Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).

2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.

Алгоритм построения КНФ следующий:

Примеры решения задач

Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид

X1X2F(X1, X2)
111
010
100
001

Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).

Таким образом, получена запись логической функции в КНФ.

Пример 2. Построить логическую функцию для заданной таблицы истинности:

X1X2F(X1, X2)
111
100
011
000

Решение. Используем алгоритм ДНФ для построения исходной функции:

X1X2F(X1, X2)
111X1 ∧ X2
100
011$↖<->$ ∧ X2
000

Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.

Формула достаточно громоздка, и ее следует упростить:

Таблицы истинности для решения логических задач

Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.

Примеры решения задач

Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.

Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».

X1X2X3Y(X1, X2, X3)
1110
1101
1011
1000
0111
0100
0010
0000

Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?

Решение. Задача легко решается, если составить соответствующую таблицу:

1-й урок2-й урок3-й урок
Информатика110
Математика101
Физика011

Из таблицы видно, что существуют два варианта искомого расписания:

Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:

Какими видами спорта увлекается каждый из мальчиков?

Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.

Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.

Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис000
Алексей00

Из таблицы видно, что в теннис может играть только Алексей.

Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис0000
Алексей100001

Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:

ФутболХоккейЛыжиПлаваниеБадминтонТеннис
Петр001100
Борис010010
Алексей100001

Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *