можно ли заряжать lifepo4 аккумуляторы автомобильным зарядным
Заряд четырех банок LiFePO4 автомобильным зарядным устройством «Вымпел-55»
После разряда LiFePO4 банок на электронной нагрузке ATORCH DL24, у меня образовалось 4 разряженных LiFePO4 банки, которые для чистоты эксперимента требовалось зарядить и замерить их емкость при заряде. Т.к. напряжение полностью заряженной банки лифера составляет 3,6В, а 4 эти банки в сумме образуют напряжение 14,4В, то для этих целей как нельзя лучше подходит автомобильное зарядное устройство. У меня имеется ЗУ «Вымпел-55», который умеет замерять отданную емкость.
Заряд четырех банок LiFePO4 на Вымпел-55
Но. потом вдруг я подумал, что лишний Ампер «сверху» не помешает и повышаю ток до 6А.
В таком режиме заряд продолжался до напряжения 13,7В на батарею и 3,425В на банку. После этого зарядные токи начали постепенно снижаться.
И тут с зарядным устройством Вымпел случилась неожиданность, автоматика ЗУ как только увидела напряжение 13,7В стала писать, что АКБ заряжен и в этот момент переставала считать Ампер-часы. Так что итоговый замер емкости как то не получился. как говорится по техническим причинам.
В любом случае считаю эксперимент удавшимся, даже если не удалось замерить емкость полностью. Теперь буду разряжать оставшиеся четыре банки на электронной нагрузке DL24.
Можно ли заряжать LiFePO4 АКБ свинцовой зарядкой?
Статья обновлена: 2021-10-28
Вопрос на засыпку: можно ли заряжать аккумуляторные батареи LiFePO 4 зарядными устройствами, предназначенными для свинцово-кислотных аккумуляторов? Теоретически это возможно, но к каким последствиям приведет такой эксперимент, и стоит ли рисковать работоспособностью батареи?
Батарея типа LiFePO 4 с номинальным напряжением 12 В при 100% уровне заряда имеет напряжение 13,3–13,4 В, а ее свинцово-кислотный аналог – 12,6–12,7 В. При уровне заряда 20% литий-железо-фосфатная АКБ удерживает напряжение порядка 13 В, а свинцово-кислотная батарея идентичной емкости – около 11,8 В. Соответственно, диапазон напряжений на 80% емкости составляет менее 0,5 В.
Зарядные устройства для LiFePO 4 батарей ограничивают напряжение аналогично свинцовым зарядникам. Но литиевые ЗУ отличаются:
ЗУ для свинцово-кислотных аккумуляторов предоставляют определенную гибкость в плане отключения напряжения, а зарядники для батарей типа LiFePO 4 в отличие от них очень требовательны к правильной настройке. Это связано с тем, что литиевые батареи боятся перезаряда и восполняют только ту емкость, которую способны принять. Закачать в них избыточную емкость с применением импульсов или других методов невозможно.
Как работает ЗУ для литиевых аккумуляторов
По графику 2-этапного метода зарядки видно, что напряжение стремительно растет в конце 1 этапа. При этом зарядный ток резко снижается, и ЗУ переходит в режим питания.
Как работает ЗУ для свинцово-кислотных батарей
«Умные» зарядные устройства для свинцово-кислотных батарей обычно используют специальные 3-этапные алгоритмы зарядки, рекомендуемые для аккумуляторов Flooded / AGM / Gel:
Свинцово-кислотные ЗУ в подавляющем большинстве имеют режим выравнивания. У ряда моделей он автоматический, неотключаемый. Литиевым батареям режим выравнивания не нужен. Более того, применение к ним выравнивающего заряда 15 В приводит к невосстанавливаемому повреждению аккумуляторов.
Кроме того, ЗУ для свинцово-кислотных батарей имеют функцию перехода на 1 стадию при снижении напряжения в процессе зарядки. Напряжение свинцово-кислотных АКБ при полном заряде составляет 12,7 В. На 3 этапе процесса зарядки ЗУ поддерживает напряжение 13,3 –13,8 В и нагрузки, работающие в этот момент.
При увеличении нагрузок выше предельной выходной мощности ЗУ напряжение АКБ снижается. Когда оно достигает напряжения «возврата к 1 стадии» – 12,5–12,7 В, инициируется новый цикл зарядки. Для литиевых АКБ это напряжение очень низкое и соответствует уровню заряда 10–15%. Для них необходимы другие значения общего напряжения – 13,1–13,2 В.
Некоторые ЗУ для свинцовых батарей при запуске определяют напряжение АКБ и на основании этих данных начинают процесс подзарядки с определенного этапа. Литиевые АКБ удерживают напряжение более 13 В, воспринимаются такими ЗУ как почти заряженные и переходят сразу в 3 стадию зарядки.
Теоретически использовать свинцово-кислотные ЗУ для зарядки литиевых АКБ можно, если используемый зарядник позволяет отключить «режим выравнивания» и установить для зарядки напряжение не выше 14,6 В. Но! Таким ЗУ можно воспользоваться для обычной зарядки, а затем обязательно отключить. Нельзя оставлять его подключенным для обслуживания или хранения литиевой АКБ, т.к. подобные зарядники не способны поддерживать корректный алгоритм зарядки для аккумуляторов на основе лития. В противном случае батарея будет невозвратимо повреждена.
Как заряжать LiFePO4 аккумуляторы
LiFePO4 — это тип литиевых аккумуляторов в которых катодом (положительным электродом) служит феррофосфат лития, а анодом (отрицательным электродом) — графит. По сравнению со свинцово-кислотными литий железо-фосфатные батареи обладают в несколько раз большей удельной емкостью и сроком службы. Благодаря чрезвычайно прочной кристаллической структуре фосфата железа, не разрушающегося при многократном приеме и возврате ионов лития эти аккумуляторы одни из самых долгоживущих в настоящее время.
Зарядка LiFePO4 аккумуляторов
LiFePO4 аккумуляторы заряжают постоянным током, постоянным напряжением либо комбинацией этих двух методов. При двухступенчатой зарядке напряжение сначала повышают постоянным током до 14,4-14,6 Вольт, а затем при постоянном напряжении происходит насыщение аккумулятора. Один этап зарядки позволяет аккумулятору набрать примерно 90- 95% емкости, два — 100%.
Характеристики типичной литий-железо-фосфатной аккумуляторной батареи:
Посмотреть общие характеристики аккумулятора
Характеристика | Значение |
Защитное напряжение при перезаряде, В/яч | 3,8± 0,025 |
Пороговое напряжение для сброса защиты при переразряде, В/яч | 3,6± 0,025 |
Порядок отключения защиты | Напряжение ниже порогового |
Защитное напряжение при переразряде, В/яч | 2,0± 0,08 |
Пороговое напряжение для сброса защиты при переразряде, В/яч | 2,3± 0,1 |
Порядок отключения защиты | Зарядка выше порогового напряжения |
Защита от перегрузки по току, А | 350 |
Задержка срабатывания защиты, с | 0,5-1,5 |
Порядок отключения защиты | Сброс нагрузки до допустимого значения |
Защита от перегрева, С | 65± 5 |
Сброс защиты при перегреве, С | 50± 10 |
Когда заряжать LiFePO4 аккумулятор
Если LiFePO4 аккумулятор разряжен не полностью, заряжать его после каждого использования не обязательно. Сульфатации, из-за которой уменьшается емкость частично заряженного свинцово-кислотного аккумулятора, у литий-железо-фосфатных батарей не бывает. Однако если система управления отсоединяет аккумулятор от нагрузки из-за низкого напряжения, лучше зарядить его немедленно.
Температура зарядки
LiFePO4 аккумуляторы заряжают при температуре от 0 до 40 С. Некоторые, но не все, безопасно заряжать при температурах ниже 0 С. При отрицательной температуре зарядный ток уменьшают до 0,05-0,1С (5-10% от емкости аккумулятора)
От перегрева аккумулятор защищает система управления. Но температуру может контролировать и зарядное устройство у которого есть температурный датчик. Такое зарядное снижает напряжение, если аккумулятор нагревается свыше 20 С и отключается если его температура достигает 55 С. Зарядное устройство дублирует функции BMS и создает дополнительный уровень защиты, который первым сработает в случае возникновения аварийной ситуации
Последовательное и параллельное соединение
Напряжение последовательно или параллельно соединяемых аккумуляторов должно быть одинаковым. Разница не должна превышать 50 мВ (Точные значения дает производитель аккумуляторной батареи). Одинаковое напряжение снижает вероятность появления дисбаланса во время эксплуатации. Если напряжения отличаются более чем на 50 мВ (0,05 В), то перед соединением аккумуляторы необходимо зарядить по отдельности одним и тем же зарядным устройством, а затем вновь проверить состояние спустя несколько часов.
Контроль за состоянием аккумулятора
Вольтметр не дает точного представления о состоянии LiFePO4 аккумулятора. Для определения его заряженности лучше использовать счетчик амперчасов или батарейный монитор. Подробнее о контроле аккумуляторов
Зарядка от генератора двигателя
Эти устройства позволяют быстро и безопасно заряжать LiFePO4 аккумуляторы от генератора автомобильного или лодочного двигателя:
Система управления аккумулятором
Литий-железо-фосфатные ячейки безопасно работают в диапазоне от 2 до 4,2 Вольт. По сравнению с другими типами литиевых элементов они более устойчивы к перенапряжению. Тем не менее, приложенное в течении продолжительного времени повышенное напряжение приводит к образованию металлического лития на аноде и навсегда ухудшает рабочие характеристики аккумулятора. Материал катода окисляется и становится менее стабильным, а выделяющийся диоксид углерода повышает давление в ячейках.
Зарядное устройство приостанавливает работу по сигналу BMS литий-железо-фосфатного аккумулятора, снимает напряжение с аккумулятора и создает дополнительный уровень защиты. Если в аварийной ситуации BMS выдает 0 Вольт, используется разъем BMS 1. Если высокий уровень сигнала (положительное напряжение), BMS 2. В обоих случаях устройство вновь запускается, после того как устранена причина отключения и аккумулятор вернулся в рабочее состояние
Система управления ограничивает максимальное напряжение каждого элемента и аккумуляторной батареи в целом. Защита срабатывает, если напряжение ячейки превышает 3,8 Вольт, а напряжение всего аккумулятора 15,2-15,6 Вольт.
Разряд аккумулятора ниже определенного уровня также недопустим. При напряжении ячейки меньше 2,0 В материал электродов начинает разрушаться, поэтому минимально рекомендуемое напряжение для большинства аккумуляторов 10,5-11,0 Вольт.
Система управления предохраняет литиевый аккумулятор от перезарядки, чрезмерного разряда и короткого замыкания. Но полагаться на одну только BMS нельзя. Первым уровнем защиты должно стать зарядное устройство и подключаемое к аккумуляторной батарее оборудование
Напряжения зарядки и емкость
Если напряжение зарядного устройства ниже определенного уровня, реакции в аккумуляторе не протекают. Если выше, ионы покидают катод и внедряются в кристаллическую структуру материала анода. Процесс происходит благодаря силе, «вбивающей» ионы внутрь кристалла. Чем больше сила, тем больше ионов проникнет в кристалл, но тем большую нагрузку он испытывает. Таким образом заряженность аккумулятора зависит от напряжения зарядки
LiFePO4 ячейки 26650 заряжались током 1,6 А до определенного напряжения, после чего напряжение ограничивалось и ток снижался до 30мА. Заряженные ячейки разряжались током 2,5 А (около 1С) до 2,6 Вольт. Видно, что заряженность аккумулятора возрастает с увеличением напряжения. При напряжении 3 Вольта она совсем небольшая, но существенно возрастает при 3,3 Вольтах. При напряжениях 3,4 и 4,2 В аккумуляторы набирали практически одинаковую емкость. Разница составила около 3%.
При низком пороговом напряжении литий-железо-фосфатный аккумулятор заряжается не полностью. Это уменьшает время его непрерывной работы, но не влияет на срок службы как у свинцово-кислотного. Зато пониженное напряжение снижает стресс аккумулятора во время зарядки.
Литий железо-фосфатные элементы можно безопасно заряжать до 4,2 Вольт. Напряжение выше этого разрушает органический электролит. Но несмотря на стойкость к перезаряду после того как аккумулятор наберет полную емкость, его необходимо отключать от источника зарядки. Время нахождения заряженного аккумулятора при пороговом напряжении должно быть минимальным
Чем заряжать LiFePO4
Зарядные устройства для LiFePO4 и для свинцово-кислотных аккумуляторов работают по одинаковому принципу. Различия в более высоком напряжении на один элемент, отсутствии стадии кондиционирования, а у некоторых моделей и поддерживающей зарядки.
Зарядные кислотных АКБ
Для свинцово-кислотных аккумуляторов общепринятой в настоящее время является зарядка, состоящая из трех – пяти стадий. Переход от одной стадии к другой происходит автоматически по мере заряда аккумулятора.
Так изменяются ток и напряжения во время зарядки свинцово-кислотных аккумуляторов. Дозарядка выполняется каждые 7 дней. Если из-за нагрузки напряжение падает до 12,5 Вольт, цикл зарядки возобновляется. Обе функции не подходят для LiFePO4 аккумуляторов
На первом этапе зарядное устройство устанавливает максимально возможный ток. Напряжение аккумулятора начинает постепенно расти, и чтобы сохранить ток постоянным, зарядное повышает выходное напряжение. Так продолжается до тех пор, пока напряжение не достигнет определенного порогового значения. Как только это произойдет зарядка постоянным током прекращается и устройство переходит ко второй стадии, которая называется абсорбцией или поглощением
Дальнейшая зарядка идет уже при фиксированном напряжении и постоянно снижающемся токе. Когда ток, потребляемый аккумулятором, опустится примерно до 10% от номинала устройства, вторая стадия завершается. Устройство переходит к этапу кондиционирования, а затем к заключительной стадии — поддерживающей зарядке. Задача последнего этапа — не допускать саморазряда аккумулятора, сульфатации и потери емкости.
Максимальная продолжительность стадии абсорбции зависит от типа свинцово-кислотного аккумулятора. У жидко-кислотных она составляет до 480 минут, а у гелевых доходит до 600 минут. Если в течении этого времени этап поглощения не завершился, срабатывает таймер и устройство переходит к поддерживающей зарядке автоматически. Так происходит, если зарядное недостаточно мощное для данной аккумуляторной батареи, в системе существует нагрузка, не позволяющая устройству снизить ток или аккумулятор поврежден и его пластины замкнуты. Для каждого конкретного аккумулятора длительность абсорбции вычисляется в зависимости от первого этапа зарядки. Когда аккумулятор сильно разряжен первый этап (зарядка постоянным током) идет долго, поэтому длинной будет и стадия абсорбции
Описанные этапы образуют «алгоритм зарядки», который имеет свои уникальные параметры для каждого типа аккумуляторов. Напряжение окончания первого этапа, напряжение абсорбции, продолжительность этапа абсорбции и поддерживающее напряжение для гелевых, AGM и жидко-кислотных аккумуляторов различные. Напряжение абсорбции изменяется от 14,0 до 15,1 Вольт, а поддерживающее напряжение от 13,2 до 13,8 Вольт.
Особенности зарядных для LiFePO4
Зарядные устройства для LiFePO4 аккумуляторов используют алгоритм постоянный ток / постоянное напряжение (CC / CV). Он обеспечивает быструю зарядку без риска перезаряда и напоминает процесс заряда свинцово-кислотных аккумуляторов. Однако есть и отличия
Напряжение железо-фосфатного аккумулятора круто растет в самом конце цикла зарядки. В этот же момент ток, потребляемый аккумулятором резко падает и зарядное устройство должно снизить или отключить напряжение
Зарядные для свинцово-кислотных аккумуляторных батарей имеют режим десульфатации электролита. Литиевые аккумуляторы выравнивания не требуют. Выравнивающее напряжения свыше 15 В + приведет к срабатыванию защиты или повредит железо-фосфатные элементы
Другая, часто встречающаяся функция — это дозарядка. Напряжение заряженного свинцово-кислотного аккумулятора около 12,7 В. Поддерживающее напряжение зарядного устройства – от 13,3 до 13,8 Вольт. Поэтому подключенное к аккумулятору зарядное устройство не только предотвращает его саморазряд, но и питает оборудование, имеющееся в электрической системе. Когда нагрузка в цепи возрастает, аккумулятор начинает разряжаться. Если через некоторое время его напряжение снизится и достигнет «уровня дозарядки», зарядное переключится в режим максимального тока и начнет новый цикл.
«Уровень дозарядки» для свинцово-кислотной аккумуляторной батареи 12,5–12,7 В. Но при таком напряжении литий-железо-фосфатный аккумулятор разряжен примерно на 85-95%. Поэтому для аккумуляторов этого типа «уровень дозарядки» должен быть выше — 13,1-13,2 Вольт.
Эти устройства подходят для зарядки LiFePo4 аккумуляторов от сети 220 В
Автомобильный генератор и LiFePO4 аккумулятор
Перед установкой литиевого аккумулятора, владельцы катеров и автомобилей часто спрашивают зачем ограничивать ток генератора во время зарядки аккумулятора. Ведь чем больше ток, тем быстрее заряжается аккумуляторная батарея. А это именно то, что требуется на транспортном средстве.
Ответить на этот вопрос поможет тест автомобильного генератора Бош с номинальной силой тока 90 А. Нагрузкой для генератора послужат проверочный стенд и LiFePO4 аккумулятор емкостью 100 Ач.
Зачем ограничивать ток
Литий-железо-фосфатные аккумуляторы можно заряжать быстро. Без ущерба для себя аккумуляторы этого типа потребляют ток равный емкости почти до самого окончания зарядки. Поэтому генератор способный давать 100 Ампер, зарядит аккумулятор емкостью 100 Ач всего один час.
Однако в генераторе, в отличии от зарядного устройства, нельзя выставить ограничение тока. Поэтому если 100 Ампер для него – это номинальное значение, то даже в прохладном помещении генератор быстро нагреется до 120-150 градусов. Под капотом же автомобиля или в двигательном отсеке катера температура достигает 100 градусов, тепло там отводится хуже, поэтому генератор разогреется еще сильнее
Генератор охлаждается воздухом, который прогоняет через него насаженная на ротор крыльчатка. Чем медленнее вращается ротор, тем слабее воздушный поток через корпус и тем хуже охлаждение. Генератор нагревается сильнее, если он вырабатывает максимальный ток на низких оборотах
Не все генераторы одинаковы. Марка также имеет значение. В равных условиях устройство признанного бренда и модель неизвестного производителя поведут себя по-разному. Первая без проблем проработает при высокой нагрузке, вторая не выдержат перегрев и выйдет из строя
DC-DC зарядные устройства ограничивают силу тока в цепи до 30 или 60 Ампер
Таким образом на состояние генератора во время работы влияет несколько различных факторов – отношение номинального и потребляемого тока, обороты двигателя и марка устройства. Учесть все в реальных условиях сложно, поэтому не нужно рассчитывать на то, что 3-4 часа непрерывной работы генератора на полной мощности не причинят ему никакого вреда. Совсем не обязательно сгорит обмотка статора. Могут выйти из строя диоды выпрямителя или расплавится пайка, соединяющая диоды с обмотками. Чтобы этого не произошло необходимо ограничить нагрузку генератора. Проще всего это сделать с помощью DC-DC зарядного устройства. При токе 70-80% от номинального значения генератор без проблем проработает в течении целого дня.
Проверка генератора
Первый тест проверяет изменение температуры генератора при максимальной нагрузке. Через три минуты после начала работы генератор дает ток 99,6 Ампер. Температура обмоток 150 градусов, но внешняя поверхность корпуса нагрелась гораздо меньше.
На пятой минуте работы температура внутри корпуса генератора поднялась до 165 градусов, а ток снизился до 97 Ампер. Снаружи корпуса температура 97 градусов
При снижении оборотов двигателя тепло исходящее от генератора увеличивается, ток постепенно падает и опускается до 92 Ампер. На низких оборотах крыльчатка на валу генератора вращается не так быстро, тепло отводится хуже и генератор постепенно перегревается. За короткий промежуток времени температура внутри корпуса вырастает со 160 до 184 градусов.
Литий-железо-фосфатный аккумулятор подключен к тестовой установке, заряжен примерно на 70%, и потребляет 12 Ампер. Остальная электрическая мощность, вырабатываемая генератором, рассеивается на нагрузке.
После отключения нагрузки литиевый аккумулятор остается единственным потребителем генератора. Однако ничего не меняется. Генератор по-прежнему работает на полной мощности вырабатывает 91 ампер и весь ток потребляет LiFePO4 аккумулятор. Теперь становится понятно, почему во время зарядки литий-железо-фосфатного аккумулятора генератор может сгореть.
На максимальной мощности генератор работает благодаря одному заряженному на 70% литий-железо-фосфатному аккумулятору емкостью 100 Ач. Если бы аккумулятор был полностью разряжен, то генератору пришлось бы работать один час, а на зарядку батареи, состоящей из 4 параллельно соединенных аккумуляторов, ушло бы четыре часа. Но ни один генератор не выдержит четыре часа непрерывной работы в горячем двигательном отсеке на полной мощности. Он выйдет из строя
Температура внутри корпуса генератора достигла 199 градусов и продолжает расти несмотря на то, что в комнате, где проводятся испытания всего 18 градусов. Чтобы представить как нагреется генератор под капотом автомобиля или в двигательном отсеке катера к наблюдаемой сейчас температуре нужно прибавить 100 градусов
Если генератор работает на низких оборотах, то время зарядки LiFePO4 аккумулятора его температура вырастает до 200 градусов. Под капотом автомобиля или в двигательном отсеке катера она может достичь 300 градусов
Напряжение аккумулятора выросло и поскольку регулятор генератора установлен на 14 вольт, ток постепенно снижается до 77 Ампер. Если бы целевое напряжение регулятора было 14,4 В генератор отдавал бы 100 А до полной зарядки аккумулятора.
Ток снижается после того как заряженность аккумулятора достигает 72%. Если бы емкость аккумуляторной батареи была 200 Ач, то и в этом состоянии она продолжала бы потреблять 90 А
Результаты испытаний
Тест подтвердил несколько важных закономерностей:
Ток зарядки литий-железо-фосфатного аккумулятора необходимо контролировать. Это предохранит генератор от повреждения и позволит ему успешно работать с аккумуляторными батареями любой емкости
Задайте вопрос,
и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты