можно ли концы стеклянной палочки зарядить разноименно
Можно ли концы стеклянной палочки зарядить разноименно
Нити на гребнях чесальных машин электризуются и прилипают к гребням. Повышенная же влажность препятствует их электризации.
Заряд образовался вследствие трения каучуковой палочки о стержень электроскопа.
При вытекании из трубы бензин электризуется настолько, что возникает электрическая искра, воспламеняющая его.
При вальцовке каучук электризуется.
Электризацией полимера при механической обработке.
Шарик, коснувшись палочки, получает заряд того же знака, который имеет она. А одноименные заряды отталкиваются.
Уменьшающаяся по величине сила будет сообщать телу соответствующее ускорение. И если пылинка вначале покоилась, то скорость ее с течением времени будет возрастать.
В состоянии невесомости шарики разойдутся на расстояние, равное удвоенному значению длины нити.
Такими телами являются, например, заряженные одноименно кольцо и маленький шарик, находящийся на оси кольца, перпендикулярной к его плоскости (рис. 306).
Разноименные. При одноименных точечных зарядах напряженность будет равна нулю.
При включении тока высокого напряжения на перьях птицы возникает статический электрический заряд, вследствие чего перья птицы топорщатся и расходятся (как расходятся кисти бумажного султана, соединенного с электростатической машиной). Это пугает птицу, и она слетает с провода.
. действующей на пробный заряд, параллельно линии, соединяющей два данных заряда.
Из рисунка 331 ясно, что перпендикуляр CD, проходящий через середину отрезка АВ, есть геометрическое место точек, в которых напряженность поля параллельна линии АВ.
В обоих случаях напряженность равна нулю.
В точке С напряженность больше, чем в точке D.
Заряженные частицы краски не разбрызгиваются беспорядочно во все стороны, а под действием сил электрического поля ложатся только на окрашиваемый предмет.
Во втором случае электроскоп зарядится больше, так как заряд снимается не с одной, а со многих точек поверхности палочки.
Нет, так как на эбоните заряды перемещаться не могут.
Статические заряды располагаются лишь на внешней поверхности проводника.
Под действием поля зарядов машины на шарике электроскопа индуцируются заряды одного знака, а на листочках другого. Так как воздух вблизи машины ионизирован, то заряды на шарике исчезают, и остаются заряды на листочках электроскопа. Чтобы электроскоп не испытывал действия, надо окружить его металлической сеткой.
Можно ли концы стеклянной палочки зарядить разноименно
Нити на гребнях чесальных машин электризуются и прилипают к гребням. Повышенная же влажность препятствует их электризации.
Заряд образовался вследствие трения каучуковой палочки о стержень электроскопа.
При вытекании из трубы бензин электризуется настолько, что возникает электрическая искра, воспламеняющая его.
При вальцовке каучук электризуется.
Электризацией полимера при механической обработке.
Шарик, коснувшись палочки, получает заряд того же знака, который имеет она. А одноименные заряды отталкиваются.
Уменьшающаяся по величине сила будет сообщать телу соответствующее ускорение. И если пылинка вначале покоилась, то скорость ее с течением времени будет возрастать.
В состоянии невесомости шарики разойдутся на расстояние, равное удвоенному значению длины нити.
Такими телами являются, например, заряженные одноименно кольцо и маленький шарик, находящийся на оси кольца, перпендикулярной к его плоскости (рис. 306).
Разноименные. При одноименных точечных зарядах напряженность будет равна нулю.
При включении тока высокого напряжения на перьях птицы возникает статический электрический заряд, вследствие чего перья птицы топорщатся и расходятся (как расходятся кисти бумажного султана, соединенного с электростатической машиной). Это пугает птицу, и она слетает с провода.
. действующей на пробный заряд, параллельно линии, соединяющей два данных заряда.
Из рисунка 331 ясно, что перпендикуляр CD, проходящий через середину отрезка АВ, есть геометрическое место точек, в которых напряженность поля параллельна линии АВ.
В обоих случаях напряженность равна нулю.
В точке С напряженность больше, чем в точке D.
Заряженные частицы краски не разбрызгиваются беспорядочно во все стороны, а под действием сил электрического поля ложатся только на окрашиваемый предмет.
Во втором случае электроскоп зарядится больше, так как заряд снимается не с одной, а со многих точек поверхности палочки.
Нет, так как на эбоните заряды перемещаться не могут.
Статические заряды располагаются лишь на внешней поверхности проводника.
Под действием поля зарядов машины на шарике электроскопа индуцируются заряды одного знака, а на листочках другого. Так как воздух вблизи машины ионизирован, то заряды на шарике исчезают, и остаются заряды на листочках электроскопа. Чтобы электроскоп не испытывал действия, надо окружить его металлической сеткой.
§ 25. Электризация тел при соприкосновении. Взаимодействие заряженных тел
Ещё в глубокой древности люди заметили, что янтарь (окаменевшая смола хвойных деревьев), потёртый о шерсть, приобретает способность притягивать к себе различные тела: соломинки, пушинки, ворсинки меха и т. д.
В дальнейшем установили, что этим свойством обладают и другие вещества: стеклянная палочка, потёртая о шёлк, палочка из органического стекла, натёртая о бумагу, эбонит (каучук с большой примесью серы), потёртый о сукно или мех.
Так, если потереть стеклянную палочку о лист бумаги, а затем поднести её к мелко нарезанным листочкам бумаги, то они начнут притягиваться к стеклянной палочке (рис. 30, а). К ней будут притягиваться и тонкие струйки воды (рис. 30, б).
Рис. 30. Электризация трением
Наблюдаемые явления в начале XVII в. были названы электрическими (от греч. электрон — янтарь). Стали говорить, что тело, получившее после натирания способность притягивать другие тела, наэлектризовано или что ему сообщён электрический заряд.
Если потереть о сухое сукно эбонитовую палочку, то не только палочка, но и сукно начнёт притягивать кусочки бумаги (рис. 30, в). Значит, при трении электризуются оба тела.
Электрический заряд может передаваться от одного тела к другому. Для этого необходимо лишь коснуться наэлектризованным телом другого тела. При этом часть электрического заряда перейдёт на второе тело. И это тело начнёт притягивать к себе мелкие листочки бумаги, пушинки и т. д.
Итак, электризация тел происходит при их соприкосновении.
На явлении электризации тел при соприкосновении основан принцип работы ксероксов. На явлении электризации основан принцип работы электрических фильтров, очищающих воздух от пыли и дыма. При окрашивании предметов применяется электризация частицы краски при её распылении, что позволяет добиться более ровного и прочного нанесения краски на предмет.
Все наэлектризованные тела обладают свойством притягивать к себе другие тела (см. рис. 30). По притяжению тел нельзя отличить электрический заряд, например, стеклянной палочки, потёртой о шёлк, от заряда эбонитовой палочки, потёртой о мех. Ведь обе наэлектризованные палочки притягивают к себе листочки бумаги.
Означает ли это, что заряды, полученные на телах из разных веществ, ничем не отличаются друг от друга?
Наэлектризуем две эбонитовые палочки трением о мех. Одну из них подвесим, как показано на рисунке 31, и поднесём к ней другую. Мы заметим, что наэлектризованные эбонитовые палочки отталкиваются.
Рис. 31. Отталкивание наэлектризованных эбонитовых палочек
Точно такой же результат получается, если вместо эбонитовых палочек взять стеклянные, потёртые о шёлк.
Теперь поднесём к наэлектризованной эбонитовой палочке стеклянную, потёртую о шёлк. Мы заметим, что эбонитовая и стеклянная палочки притягиваются друг к другу (рис. 32).
Рис. 32. Притяжение наэлектризованных палочек
Таким образом, наэлектризованные тела или притягиваются друг к другу, или отталкиваются.
Чем же может быть вызвано такое различие во взаимодействии наэлектризованных тел?
Очевидно, тем, что электрический заряд, появившийся при электризации, у эбонитовой палочки иного рода, чем у стеклянной. И действительно, тщательное изучение этих явлений подтверждает такое предположение.
Электрический заряд, полученный на стеклянной палочке, потёртой о шёлк, условились называть положительным. Заряд эбонитовой палочки, потёртой о мех, — отрицательным. Одни тела электризуются так, как стеклянная палочка, т. е. положительно. Другие, как эбонитовая палочка, — отрицательно. Положительные заряды обозначают знаком « + », отрицательные — знаком «-».
Притяжение разноимённо заряженных султанчиков
К наэлектризованной эбонитовой палочке будем подносить наэлектризованные тела из различных веществ, например из резины, пластмассы и др. В одних случаях эбонитовая палочка отталкивается от этих тел, в других — притягивается.
Если эбонитовая палочка отталкивается от поднесённого к ней наэлектризованного тела, значит, на палочке заряд такого же рода, что и на теле, т. е. отрицательный. В случае, когда эбонитовая палочка притягивается к поднесённому телу, значит, у палочки и у тела заряды разного рода. На эбонитовой палочке — отрицательный, на теле — положительный.
Поэтому можно считать, что существует только два рода электрических зарядов.
Проделанные нами опыты показывают, что тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.
Электростатика
Техника безопасности по теме «Электрические явления»
Введение
В своей работе по теме «Электростатика» я проведу и объясню три эксперимента, описанные в учебнике Перышкина А.В. Физика. 8 класс (рис. 32, рис. 40,).
Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.
Способность янтаря электризоваться была известна давно. Впервые исследованием этого явления занялся знаменитый философ древности Фалес Милетский. Вот как об этом рассказывает легенда.
Дочь Фалеса пряла шерсть янтарным веретеном, изделием финикийских мастеров. Как-то, уронив веретено в воду, девушка стала обтирать его краем своего шерстяного хитона и заметила, что к веретену пристало несколько шерстинок. Думая, что они прилипли к веретену, потому что оно еще влажно, она принялась вытирать его еще сильнее. И что же? Шерстинок налипало тем больше, чем сильнее натиралось веретено. Девушка обратилась за разъяснением этого явления к отцу. Фалес понял, что причина в веществе, из которого сделано веретено, и в первый же раз, как к пристани Милета подошел корабль финикийских купцов, он накупил различных янтарных изделий и убедился, что все они, будучи натерты шерстяной материей, притягивают легкие предметы, подобно тому, как магнит притягивает железо. Наблюдаемые явления были названы электрическими (от греч. слова электрон – янтарь).
Опыт первый. Электризация гильзы
Цель опыта проверить выдвигаемую гипотезу: электризация тел может происходить не только при трении. Я считаю, что разноименно заряженные тела притягиваются, а одноименно заряженные отталкиваются. Докажу это при помощи металлической гильзы, подвешенной на нити к штативу, эбонитовой палочки и стеклянной палочки.
Наэлектризую эбонитовую палочку о шелк. Она получит отрицательный заряд. Поднесу её к гильзе, изготовленной из металлической фольги и висящей на шелковой нити на штативе. Подожду некоторое время. Гильза сначала притянется к палочке, затем оттолкнется от нее. Очевидно, гильза, коснувшись палочки, получила от нее отрицательный заряд. Это предположение можно проверить, если к уже заряженной гильзе поднести наэлектизованную стеклянную палочку. Гильза, которая только что оттолкнулась от эбонитовой палочки, притягивается к стеклянной. Что и требовалось доказать.
Знания об электроне и о строении атома позволяют объяснить притяжения не наэлектризованных тел к наэлектризованным. Дело в том, что в гильзе есть свободные электроны. Как только гильза будет внесена в электрическое поле отрицательно заряженной палочки, электроны придут в движение под действием сил поля. Они перейдут на дальнюю сторону гильзы. Дальний конец зарядится отрицательно. На ближайшей стороне гильзы будет недостаток электронов, и этот конец окажется заряженным положительно. Поэтому гильза притянется к палочке.
Вывод из первого опыта: электризация тел может происходить не только при трении. Разноименно заряженные тела притягиваются, а одноименно заряженные отталкиваются.
При расчесывании, волосы начинают прилипать к расческе, при трении воздушного шара о шерсть, шелк и т.п. материалы, он прилипает к телу или волосы притягиваются к нему.
Научное исследование электрических и магнитных явлений началось с книги Гильберта, которому принадлежит и термин «электричество», произведенный от греческого названия янтаря. Гильберт кропотливо исследовал множество самых различных тел и построил для этой цели специальный электрический указатель, который он описывает таким образом: «Сделай себе из любого металла стрелку длиной в три или четыре дюйма, достаточно подвижную на своей игле, наподобие магнитного указателя». С помощью этого указателя, прототипа современных электроскопов, Гильберт установил, что способностью притягивать обладают многие тела, «не только созданные природой, но и искусственно приготовленные». Однако он нашел также, что многие тела «не притягивают и не возбуждаются никакими натираниями». К числу их относится ряд, драгоценных камней и металлы: «серебро, золото, медь, железо, также любой магнит». Тела, обнаруживающие способность притяжения, Гильберт назвал электрическими, тела, не обладающие такой способностью, — неэлектрическими.
Электрические явления, по Гильберту, коренным образом отличаются от магнитных. Гильберт указывает, как производится электризация тел трением: «Их натирают телами, которые не портят их поверхности и наводят блеск, например жестким шелком, грубым немарким сукном и сухой ладонью. Трут также янтарь о янтарь, об алмаз, о стекло и многое другое. Так обрабатываются электрические тела».
В сочинении Гильберта много интересных наблюдений и догадок, смешанных с фантастическими объяснениями в духе средневековых алхимиков. Но главное значение его труда в том, что он положил твердое основание изучению электрических и магнитных явлений, и на этом основании началось интенсивное развитие этого важного раздела науки и техники. Электрическими опытами занимался и Ньютон, который наблюдал электрическую пляску кусочков бумаги, помещенных под стеклом, положенным на металлическое кольцо. При натирании стекла бумажки притягивались к нему, затем отскакивали, вновь притягивались, и т. д. Эти опыты Ньютон производил еще в 1675 г.
Эксперименты по электричеству проводили и другие члены Лондонского Королевского общества. Бойль, повторив опыты Герике с шаром, установил, что наэлектризованное тело не только притягивает не наэлектризованное, но и, в свою очередь, притягивается последним. Он показал, что электрические взаимодействия наблюдаются и в вакууме.
В 1700 г. доктор Уолл извлек из натертого большого куска янтаря электрическую искру, проскочившую с треском в палец руки экспериментатора. Электрическую искру получил в 1705 г Хауксби, заменивший серный шар Герике стеклянным. Ньютон в 1716 г. наблюдал искровой разряд между острием иголки и наэлектризованным телом. «Искра напомнила мне о молнии в малых, очень малых размерах», — писал Ньютон. Наконец, Стефан Грей (1670-1736), также член Лондонского Королевского общества, в 1729 г. открыл явление электропроводимости тел и показал, что для сохранения электричества тело должно быть изолировано. Он наэлектризовал ребенка, сначала по две сив его на шнурах, сплетенных из волос, а затем поставив его на смоляной диск.
Опыты Грея, опубликованные в 1731 и 1732 гг., обратили на себя внимание французского естествоиспытателя Шарля Дюфэ (1698—1739), создавшего первую теорию электрических явлений. Повторяя опыты Грея по электризации изолированного человеческого тела, он сам ложился на шелковые шнурки, и его электризовали настолько сильно, что из тела при приближении руки другого человека выскакивали искры.
Дюфэ установил два рода электрических взаимодействий: притяжение и отталкивание. Сначала он установил, что «наэлектризованные тела притягивают не наэлектризованные и сейчас же их отталкивают, как только они наэлектризуются вследствие соседства или соприкосновения с наэлектризованными телами». В дальнейшем он открыл «другой принцип, более общий и более замечательный, чем предыдущие». «Этот принцип, — продолжает Дюфэ, — со стоит в том, что существует электричество двух родов, в высокой степени отличных один от другого: один род я называю «стеклянным» электричеством, другой— «смоляным». Особенность этих двух родов электричества: отталкивать однородное с ним и притягивать противоположное. Так, например, тело, наэлектризованное стеклянным электричеством, отталкивает все тела со стеклянным электричеством, и, обратно, оно притягивает тела со смоляным электричеством. Точно так же смоляное отталкивает смоляное и притягивает стеклянное».
Опыт второй. Делимость электрического заряда
Заряжу электрометр при помощи эбонитовой палочки, т.е. отрицательно. Второй электрометр будет не заряженный. При помощи проводника – металлического стержня – соединю не наэлектризованный электрометр с наэлектризованным. Именно в этой последовательности, так как заряд может просто уйти в проводник. Свободные электроны стержня окажутся в электрическом поле и придут в движение по направлению к не заряженному электрометру, и он зарядится отрицательно. Заряд поделился поровну.
Такие опыты проводили советский учёный Абрам Фёдорович Иоффе и американский учёный Роберт Милликен. В своих опытах они электризовали мелкие пылинки цинка. Заряд пылинок меняли и вычисляли. Так поступали несколько раз. При этом заряд оказывался каждый раз другим. Но все его изменения были в целое число раз (т. е. в 2, 3, 4 и т. д.) больше некоторого определённого наименьшего заряда. Этот результат можно объяснить только так. К пылинке цинка присоединяется или от неё отделяется только наименьший заряд (или целое число таких зарядов). Этот заряд дальше уже не делится. Частицу, имеющую самый маленький заряд, назвали электроном.
Электрон очень мал. Масса электрона равна 9,1 · 10 –31 кг. Эта масса примерно в 3700 раз меньше массы молекулы водорода, которая является наименьшей из всех молекул.
Электрический заряд — это одно из основных свойств электрона. Нельзя представить, что заряд можно снять с электрона. Они неотделимы друг от друга.
Электрический заряд — это физическая величина. Она обозначается буквой q. За единицу электрического заряда принят кулон (Кл). Эта единица названа в честь французского физика Шарля Кулона.
Электрон — частица с наименьшим отрицательным зарядом. Его заряд равен –1,6 · 10 –19 Кл.
Если коснуться заряженного предмета (например, шара электрометра) рукой, то этот предмет разрядится. Через руку электрический заряд уйдет в наше тело и распределится по его поверхности. То же самое произойдет и в том случае, если мы дотронемся до шара электрометра не рукой, а металлической линейкой.
Вывод из второго опыта: заряд можно делить до определенной величины. Существует заряженная частица, которая имеет самый маленький заряд, который разделить нельзя. Частицу, имеющую самый маленький заряд, назвали электроном.
Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдет. На этом основано заземление – передача заряда земле. Земной шар велик по сравнению с телами, находящимися на нем. Поэтому при соприкосновении с землей заряженное тело отдает ей почти весь свой заряд и практически становится электрически нейтральным.
Опыт третий. Взаимодействие султанов
Два султана соединю длинными проводами с разными индукторами электрофорной машины. Один султан зарядится положительно, другой отрицательно. По лепесткам султанов видно, что одноименные заряды отталкиваются. Указкой буду сближать султаны. Между собой они будут притягиваться, т. к. заряжены разными знаками.
Вывод из третьего опыта: тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются. Электризация тел происходит при их соприкосновении.
На явлении электризации тел при соприкосновении основан принцип работы ксероксов.
§ 25. Электризация тел при соприкосновении. Взаимодействие заряженных тел
Ещё в глубокой древности люди заметили, что янтарь (окаменевшая смола хвойных деревьев), потёртый о шерсть, приобретает способность притягивать к себе различные тела: соломинки, пушинки, ворсинки меха и т. д.
В дальнейшем установили, что этим свойством обладают и другие вещества: стеклянная палочка, потёртая о шёлк, палочка из органического стекла, натёртая о бумагу, эбонит (каучук с большой примесью серы), потёртый о сукно или мех.
Так, если потереть стеклянную палочку о лист бумаги, а затем поднести её к мелко нарезанным листочкам бумаги, то они начнут притягиваться к стеклянной палочке (рис. 30, а). К ней будут притягиваться и тонкие струйки воды (рис. 30, б).
Наблюдаемые явления в начале XVII в. были названы электрическими (от греч. электрон — янтарь). Стали говорить, что тело, получившее после натирания способность притягивать другие тела, наэлектризовано или что ему сообщён электрический заряд.
Если потереть о сухое сукно эбонитовую палочку, то не только палочка, но и сукно начнёт притягивать кусочки бумаги (рис. 30, в). Значит, при трении электризуются оба тела.
Электрический заряд может передаваться от одного тела к другому. Для этого необходимо лишь коснуться наэлектризованным телом другого тела. При этом часть электрического заряда перейдёт на второе тело. И это тело начнёт притягивать к себе мелкие листочки бумаги, пушинки и т. д.
Итак, электризация тел происходит при их соприкосновении.
На явлении электризации тел при соприкосновении основан принцип работы ксероксов. На явлении электризации основан принцип работы электрических фильтров, очищающих воздух от пыли и дыма. При окрашивании предметов применяется электризация частицы краски при её распылении, что позволяет добиться более ровного и прочного нанесения краски на предмет.
Все наэлектризованные тела обладают свойством притягивать к себе другие тела (см. рис. 30). По притяжению тел нельзя отличить электрический заряд, например, стеклянной палочки, потёртой о шёлк, от заряда эбонитовой палочки, потёртой о мех. Ведь обе наэлектризованные палочки притягивают к себе листочки бумаги.
Означает ли это, что заряды, полученные на телах из разных веществ, ничем не отличаются друг от друга?
Наэлектризуем две эбонитовые палочки трением о мех. Одну из них подвесим, как показано на рисунке 31, и поднесём к ней другую. Мы заметим, что наэлектризованные эбонитовые палочки отталкиваются.
Точно такой же результат получается, если вместо эбонитовых палочек взять стеклянные, потёртые о шёлк.
Теперь поднесём к наэлектризованной эбонитовой палочке стеклянную, потёртую о шёлк. Мы заметим, что эбонитовая и стеклянная палочки притягиваются друг к другу (рис. 32).
Таким образом, наэлектризованные тела или притягиваются друг к другу, или отталкиваются.
Чем же может быть вызвано такое различие во взаимодействии наэлектризованных тел?
Очевидно, тем, что электрический заряд, появившийся при электризации, у эбонитовой палочки иного рода, чем у стеклянной. И действительно, тщательное изучение этих явлений подтверждает такое предположение.
Электрический заряд, полученный на стеклянной палочке, потёртой о шёлк, условились называть положительным. Заряд эбонитовой палочки, потёртой о мех, — отрицательным. Одни тела электризуются так, как стеклянная палочка, т. е. положительно. Другие, как эбонитовая палочка, — отрицательно. Положительные заряды обозначают знаком «+», отрицательные — знаком «-».
К наэлектризованной эбонитовой палочке будем подносить наэлектризованные тела из различных веществ, например из резины, пластмассы и др. В одних случаях эбонитовая палочка отталкивается от этих тел, в других — притягивается.
Если эбонитовая палочка отталкивается от поднесённого к ней наэлектризованного тела, значит, на палочке заряд такого же рода, что и на теле, т. е. отрицательный. В случае, когда эбонитовая палочка притягивается к поднесённому телу, значит, у палочки и у тела заряды разного рода. На эбонитовой палочке — отрицательный, на теле — положительный.
Поэтому можно считать, что существует только два рода электрических зарядов.
Проделанные нами опыты показывают, что тела, имеющие электрические заряды одинакового знака, взаимно отталкиваются, а тела, имеющие заряды противоположного знака, взаимно притягиваются.
Вопросы
1. Как взаимодействуют друг с другом две эбонитовые палочки, наэлектризованные трением о мех?
2. Как показать, что стеклянная палочка, наэлектризованная трением о шёлк, имеет заряд другого рода, чем заряд эбонитовой палочки, наэлектризованной трением о шерсть?
3. Какие два рода электрических зарядов существуют в природе?
4. Как взаимодействуют тела, имеющие заряды одного знака; разного знака?
Упражнение 18
1. Можно ли на концах стеклянной палочки получить одновременно разноимённые заряды?
2. На шёлковой нити висит заряженная бумажная гильза. Предложите способ определения рода заряда гильзы.
Задание
1. Возьмите маленький кусочек ватки. Наэлектризуйте пластмассовую расчёску и поднесите её к ватке. Ватка наэлектризуется и притянется к расчёске. Резко дёрнув расчёску, оторвите ватку и быстро подведите расчёску под ватку. Почему ватка плавает в воздухе?
2. Наэлектризуйте один воздушный шарик о газету, другой — о кусок шерстяной материи. Подвесьте их на некотором расстоянии друг от друга. Почему они притягиваются?