можно ли искусственно создать ген

Изменение собственных генов всего лишь одной инъекциeй – если, конечно, вы везучи

можно ли искусственно создать ген

Биохакер Джошуа Зайнер хочет создать мир, в котором любой человек способен и в праве экспериментировать со своей ДНК.

«У нас здесь немного ДНК и шприц», – говорит Джошуа Зайнер в комнате, полной синтетических биологов и других исследователей. Он наполняет иглу и вонзает её в кожу. «Это изменит мои мышечные гены, и даст мне больше мышечной массы».

Зайнер – биохакер, он экспериментирует с биологией в DIY, а не в обычной лаборатории, – выступил на конференции SynBioBeta в Сан-Франциско с докладом «Пошаговое руководство по генетическому изменению себя с помощью CRISPR», где в других презентациях участвовали академики в костюмах и молодые руководители типичных биотехнологических стартапов. В отличие от прочих, он начал своё выступление, раздавая образцы и буклеты, в которых объяснялись основы DIY генной инженерии.

можно ли искусственно создать ген

Биохакер Зайнер выступил на конференции SynBioBeta с докладом «Пошаговое руководство по генетическому изменению себя с помощью CRISPR»

Если вы хотите генетически модифицировать себя, – это не обязательно сложно. Когда он предложил образцы в маленьких пакетиках толпе, Зайнер объяснил, что ему потребовалось около пяти минут, чтобы сделать ДНК, которую он привёз на презентацию. В пробирке был Cas9, фермент, который разрезает ДНК в определённом месте, ориентированном по направляющей РНК, в системе редактирования генов, известной как CRISPR. В этом примере он был разработан для выключения гена миостатина, который вырабатывает гормон, ограничивающий рост мышц и уменьшающий мышечную массу. В исследовании, проведённом в Китае, собаки с отредактированным геном имели удвоенную мышечную массу. Если кто-то из зрителей захотел попробовать, они могли взять пробирку домой и ввести его позже. Даже капая его на кожу, сказал Зейнер, вы получите эффект, хотя и ограниченный.

Зайнер имеет докторскую степень по молекулярной биологии и биофизике, он также работал научным сотрудником в НАСА по модификации организмов для жизни на Марсе. Но он полагает, что синтетическая биология для редактирования других организмов или себя может стать столь же простой в использовании, как, например, CMS для создания веб-сайта.

«Вам не нужно знать, какой промотор использовать чтобы заставить работать нужный ген или фрагмент ДНК, – говорит он, используя некоторые технические термины из генной инженерии. «Вы не хотите знать, какой терминатор использовать, или ориджин репликации… Инженер, программирующий ДНК, должен знать, как это сделать. Но единственное, что вам нужно знать, – так, я хочу, чтобы гриб был фиолетовым. Это не должно быть сложнее. Всё это вполне возможно – это просто создание инфраструктуры и платформы, чтобы любой мог это сделать».

Конечно, магазин приложений для генетического редактирования ещё не создан. Но немалое число биохакеров узнали достаточно, чтобы – порой необдуманно – экспериментировать над собой. Несколько человек, которых Зайнер знает, например, начали вводить себе миостатин. «Это происходит прямо сейчас», – говорит он. «Все эти вещи начали появляться буквально в последние несколько недель». Пока ещё рано говорить о том, улучшили ли инъекции экспериментаторов или вызвали проблемы, но некоторые надеются увидеть результаты в ближайшие месяцы.

Несмотря на проведённое в академических кругах время, Зайнер явно не является типичным исследователем и избегает идеи, что эксперименты должны ограничиваться лабораториями. Когда в НАСА он начал общаться с другими биохакерами через список рассылки, и узнал о проблемах тех, кто хотел делать DIY работу, – поставщиков было трудно найти, и они не всегда отправляли нужные заказы тем, у кого не было лаборатории, – он в 2013 году начал бизнес под названием The ODIN (Open Discovery Institute, and an homage to the Norse god), чтобы пересылать комплекты и инструменты людям, желающим работать в своём гараже или комнате. В 2015 году, решив покинуть НАСА, потому что ему не нравилось работать в их консервативной среде, он запустил успешную кампанию по сбору средств для набора DIY CRISPR.

можно ли искусственно создать ген

«Единственное, что вам нужно знать, – так, я хочу, чтобы гриб был фиолетовым. Это не должно быть сложнее.»

можно ли искусственно создать ген

Зайнер продает полную домашнюю лабораторию биохакинга примерно по цене MacBook Pro.

Он задаёт вопрос, являются ли традиционные методы исследования, такие как рандомизированные контролируемые испытания, единственным способом сделать открытия, указывая на то, что в новой персонализированной медицине (такой как иммунотерапия рака, которая персонализирована для каждого пациента), размер выборки одного человека имеет смысл. В своём выступлении он утверждал, что люди должны иметь возможность самостоятельно экспериментировать, если захотят; мы меняем нашу ДНК, когда пьём алкоголь или курим сигареты, или дышим грязным городским воздухом. Многие действия, санкционированные обществом, более опасны. «Мы жертвуем, возможно, миллион людей в год автомобильным богам» – сказал он. «Если вы спросите кого-нибудь: ‘Не могли бы вы избавиться от автомобилей?’ – нет.» (Зайнер экспериментировал по-разному, включая экстремальную пересадку фекалий DIY, которая, по его словам, вылечила его проблемы с пищеварением, он также помогает больным раком с DIY иммунотерапией).

Если вы измените свою ДНК, вы можете затем секвенировать свой геном, чтобы увидеть, произошло ли изменение. Но эксперимент в гараже не может предоставить столько информации, сколько обычные методы. «Вы можете подтвердить, что вы изменили ДНК, но это не значит, что оно безопасно и эффективно», – говорит Джордж Чёрч, профессор генетики в Гарвардской Медицинской Школе (которая также выступает в качестве адвайзера компании Зайнера, признавая ценность биологически грамотной публики в веке биологии). «Всё, что он делает, – говорит вам, что вы сделали правильную работу, но это может быть опасно, потому что вы также изменили что-то ещё. Это может быть неэффективным в том смысле, что недостаточно клеток было изменено, или уже слишком поздно, и ущерб уже был нанесён». Если ребёнок рождается с микроцефалией, например, изменение генов в его теле, скорее всего, не повлияет на его мозг.

можно ли искусственно создать генimg

«Мы живём в невероятное время, когда мы изучаем очень многое в биологии и генетики благодаря CRISPR, но мы всё ещё многого не знаем о безопасности редактирования человеческих клеток с помощью CRISPR.»

Любой, кто хочет ввести себе модифицированную ДНК, рискует без достаточного количества данных или, возможно, любых реальных данных – о том, что может произойти, для принятия обоснованного решения. Это, наверное, само собой разумеется: не пытайтесь делать это дома. «Мы живём в невероятное время, когда мы изучаем очень многое в биологии и генетики благодаря CRISPR, но мы всё ещё многого не знаем о безопасности редактирования человеческих клеток с помощью CRISPR», – говорит Алекс Марсон, исследователь в области микробиологии и иммунологии в Калифорнийском университете в Сан-Франциско и эксперт по CRISPR. «Очень важно, чтобы оно проходило через тщательные и проверенные тесты безопасности в каждом случае, и делалось ответственным образом».

В Германии биохакинг теперь вне закона, и человек, проводящий эксперименты за пределами лицензированной лаборатории, может получить штраф в размере €50 000 или три года в тюрьме. Всемирное антидопинговое агентство теперь запрещает все формы редактирования генов у спортсменов. Однако в США биохакинг ещё не регулируется. И Зайнер не считает, что вообще должен, он сравнивает опасения, что люди изучают, как использовать синтетическую биологию, с опасениями изучения, как использовать компьютеры, в начале 1980-х. (Он приводит интервью 1981 года, в котором Тед Коппел спросил Стива Джобса, есть ли опасность того, что люди окажутся под контролем компьютеров.) Зайнер надеется продолжать помогать как можно большему числу людей, становится более «грамотными в ДНК».

«Я хочу жить в мире, где люди генетически модифицируют себя. Я хочу жить в мире, где все эти классные вещи, которые мы видим в научно-фантастических телешоу, реальны. Может быть, я сумасшедший и глупый… но я думаю, наверное, это действительно возможно».

Вот почему, он сделал себе инъекцию перед толпой на конференции. «Я хочу, чтобы люди перестали спорить о том, можно ли использовать CRISPR или нельзя, нормально ли генетически модифицировать себя», – говорит он. «Уже слишком поздно: я сделал выбор за вас. Споры закончены. Давайте продолжим. Давайте использовать генную инженерию, чтобы помочь людям. Или дать им фиолетовую кожу».

Источник

Обыгрывая бога: как делают искусственную ДНК

можно ли искусственно создать ген

можно ли искусственно создать ген

Участники

Джордж Чёрч, профессор Гарвардского университета и Массачусетского технологического института. Разработал несколько революционных методов секвенирования ДНК, внес большой вклад в создание ГМ-технологий с использованием CRISPR/Cas9. В 2015 году успешно пересадил гены шерстистых мамонтов в ДНК современных слонов. Крейг Вентер, президент собственного института генетики. Руководил независимым проектом по чтению ДНК человека. В 2010 году продемонстрировал живую клетку с искусственным геномом: ее ДНК не собиралась из фрагментов, выделенных из других клеток, а синтезировалась в лаборатории.

можно ли искусственно создать ген

Цель игры

Клетки — это основа жизни. Они содержат наследственную информацию в виде молекул ДНК, совокупность которых называют геномом. Геном определяет, какие молекулы клетка будет производить, как она будет делиться, какие химические реакции осуществлять. Некоторые из этих функций универсальны: способности удваивать свою ДНК и синтезировать белки, делиться, поглощать вещества из окружающей среды и формировать мембрану нужны почти любой клетке.

Другие задачи специализированы и часто связаны с приспособлением к конкретным условиям жизни. Например, бактерии могут иметь гены, обеспечивающие защиту от антибиотиков, а могут и не иметь, если она им не нужна. Клетки многоклеточных организмов содержат в геноме инструкции, позволяющие им кооперироваться и взаимодействовать, организовываться в пространстве и специализироваться, формируя сложные ткани и органы. Участки ДНК, регулирующие эти процессы, часто не нужны отдельным клеткам, но необходимы для функционирования целого организма.

можно ли искусственно создать ген

Задача, которую решают наши игроки, состоит в том, чтобы установить минимальный набор генов, необходимый клетке. Такой организм должен содержать полный комплект инструкций, позволяющих ему поддерживать свое существование и делиться — но ничего сверх этого. Только самое нужное.

Решение этой задачи важно по трем причинам. Во-первых, мы сможем лучше понять, как работают клетки. Во-вторых, получим удобную модель для изучения генов и их функций. В-третьих, «минимальный» организм можно будет адаптировать для синтеза какого-нибудь лекарства, биотоплива или другого нужного соединения. Лишенный лишних генов организм не будет тратить время и ресурсы на их работу и копирование, став более эффективным производителем.

Игровое поле

Размеры генома могут быть очень разными, и со сложностью самого организма прямо они не связаны. ДНК круглых червей Caenorhabditis elegans включает 97 млн нуклеотидов и примерно 20 000 генов. Геном человека куда более громоздкий — 3 млрд нуклеотидов, но кодирующих белки генов у нас немногим больше, чем у нематоды, всего 20−25 тысяч. Но бывают организмы с еще более «раздутыми» геномами. Например, у двоякодышащей рыбы Protopterus aethiopicus он в 40 раз больше, чем у человека. Такой разброс в размерах во многом объясняется тем, что кроме важных генов ДНК накапливает массу лишнего и ненужного. Еще в 2004 году были получены мыши, из генома которых вырезаны весьма обширные «пустые» фрагменты ДНК — в 1,5 и в 0,8 млн нуклеотидов. Такие животные ничем не отличались от своих обычных родственников, нормально развивались и оставляли здоровое потомство.

можно ли искусственно создать ген

Самыми «экономичными» геномами могут похвастаться вирусы, бактерии и археи. Среди последних рекордсменом остаются живущие в горячих источниках Nanoarchaeum equitans, ДНК которых сложена всего из 490 000 нуклеотидов и содержит ровно 5408 генов. Один из самых компактных геномов бактерий принадлежит паразитическим Mycoplasma genitalium: 580 000 нуклеотидов и смешные 475 генов, кодирующих белки. Жаль, что эти микробы размножаются чересчур медленно и не слишком удобны для исследований. Впрочем, у них есть близкие и быстрорастущие родственники Mycoplasma mycoides с примерно вдвое большим геномом и количеством генов. ДНК именно этой бактерии выбрал Крейг Вентер для дальнейшей «оптимизации».

Ход Вентера

В 2010 году командой Вентера была получена синтетическая копия генома M. mycoides. Ученые перенесли ее в клетку, из которой заранее была удалена собственная ДНК; полученная микоплазма нормально делилась и функционировала. Именно эту работу сотрудники американского журнала Newsweek окрестили «Игрой в бога». Но если это была игра, то в 2016 году Вентер «переиграл» Создателя, сократив исходный геном микоплазмы уже примерно вдвое — и снова получив совершенно жизнеспособные клетки.

можно ли искусственно создать ген

В теории подход к упрощению генома несложен: достаточно получать мутантные клетки и анализировать их ДНК. Если клетка остается жива, несмотря на то что какой-то ген в ней испорчен, мы можем считать, что этот ген не так уж ей нужен, и удалить его из финального набора. Таким способом Вентер и его группа изучили десятки тысяч мутантов, обнаружив, что ненужного в геноме микоплазмы почти нет. Отбросив все лишнее, ученые получили функционирующую бактерию с геномом в 531 000 нуклеотидов: 438 белковых генов, плюс еще 35, кодирующих функциональные молекулы РНК. Всего на 428 генов меньше, чем в исходном геноме Mycoplasma mycoides, с которого началась работа.

Нельзя сказать, что удаление «лишних генов» сказалось на полученных клетках как-то особенно плохо. Один из критериев приспособленности одноклеточного организма к окружающей среде — скорость его деления. Для удвоения численности клеткам «упрощенной» бактерии требуется около 180 минут. Это втрое дольше, чем для исходного варианта микоплазмы, зато в пять раз быстрее, чем требуется ее медленному собрату M. genitalium. Впрочем, сами авторы упрощенного генома не считают, что работа завершена. Сравнивая геномы разных одноклеточных организмов, ученые выделили порядка 250 вездесущих «универсальных генов» — к этому идеалу и стремятся Вентер и его коллеги. Ну а тем временем Джордж Чёрч исследует простоту с другой стороны, пытаясь минимизировать сам код ДНК.

можно ли искусственно создать ген

Ход Чёрча

Генетический код — это набор правил, по которым гены кодируют белки. С участков ДНК (генов) считываются их копии в виде молекул РНК, которые служат инструкциями для синтеза белков, состоящих из аминокислот. Каждая аминокислота кодируется тройкой нуклеотидов исходной цепочки ДНК. Например, в последовательности ГААГГЦЦГА первые три буквы (ГАА) соответствуют глютаминовой кислоте, далее следуют глицин (ГГЦ) и аргинин (ЦГА). При этом и ДНК, и РНК состоят всего из четырех видов нуклеотидов, которые могут складывать 64 разные тройки, но аминокислот в белках (за редчайшими исключениями) всего 20. Поэтому почти каждой аминокислоте «приписано» по несколько таких троек-кодонов — например, глютаминовая кислота кодируется последовательностями ГАА и ГАГ. Но из этого следует, что если во всех генах организма заменить тройки ГАА на ГАГ (или наоборот), то белки этого организма не изменятся, зато мы упростим сам геном, избавившись от избыточных нуклеотидных кодонов. Такой работой и занят Джордж Чёрч со своей командой. В 2016 году они опубликовали статью о получении первого в мире организма, модифицированной кишечной палочки с генетическим кодом, состоящим всего из 57 кодонов вместо стандартных 64. То есть — с семью убранными тройками нуклеотидов.

можно ли искусственно создать ген

«Упрощение» генетического кода может иметь важный эффект — невероятную устойчивость таких организмов к вирусам. В самом деле, эти внутриклеточные паразиты сами размножаться неспособны. Они полностью полагаются на возможности «порабощенной» клетки, рассчитывая на то, что их собственные гены будут работать в ней так же, как всегда, как работает и геном самой бактерии. Но если у нее просто нет аппарата, который может интерпретировать незнакомые бактерии кодоны в вирусном геноме, то паразит просто не сможет функционировать.

можно ли искусственно создать ген

Новая игра

Сегодня Джордж Чёрч и его коллеги всерьез обсуждают возможность запуска проекта по синтезу человеческого генома — всех 3 млрд нуклеотидов, организованных в хромосомы. И пусть пока что эта задача смотрится заведомо проигрышной: когда-то и проект чтения генома человека выглядел совершенно неподъемным. Однако он стимулировал такой скачок технологий секвенирования, что стоимость чтения генома упала в тысячи раз и сегодня оказалась по карману самым обычным людям. Возможно, глобальный проект в области синтеза генома позволит совершить прорыв в методах создания новых молекул ДНК. Сделать процесс дешевле, быстрее, эффективнее. Параллельно могут появиться новые способы доставки ДНК в клетки, так необходимые в медицине: уже сегодня врачи приступают к использованию генной терапии для лечения некоторых наследственных и онкологических заболеваний. На подходе и применение этих методов для борьбы с вирусами, в том числе с ВИЧ — и от решения проблемы доставки генов в целевые клетки зависит успех новых многообещающих подходов.

Остается надеяться, что Чёрчу, Вентеру и всем остальным хватит смелости довести игру до конца. Быть может, к этому моменту уже подоспеют и надежные технологии клонирования человека. Тогда нам будет по силам получение не просто отдельной клетки с искусственно созданным геномом, а полноценного человека с синтетическими, оптимизированными хромосомами. Из отдельных химических веществ, «из глины», — почти из ничего.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *