микросхема что это такое простыми словами

Что такое микросхема? Как ее проектируют и производят?

микросхема что это такое простыми словами

Изобретение биполярного транзистора позволило сделать электронно-вычислительные машины значительно меньшими в размерах, а появление в 1950 году полевого транзистора дало возможность углубиться миру в цифровую схемотехнику и создать микросхемы, без которых сегодняшние технологии были бы невозможными.

Соединив множество транзисторов, можно создать цифровую схемотехнику, однако это будет выглядеть довольно громоздко. Тогда родилась идея объединить несколько транзисторов на одном куске полупроводника. Так в 1958 году была создана первая в мире интегральная микросхема. Первоначально она включала в себя небольшое количество транзисторов, но со временем их число стало увеличиваться. Например, Rentium 4 соединяет несколько миллионов транзисторов. Сам процесс производства современных интегральных микросхем очень сложен. Чтобы разработать проект нового чипа понадобится около полутора лет, при этом затраты на это составят около одного миллиарда американских долларов.микросхема что это такое простыми словами

Первым делом необходимо разработать проект микросхемы в системе автоматического проектирования (САПР). Раньше надо было располагать каждый транзистор на куске кремния, теперь же, с изменением типовых линейных размеров транзистора до минимума, когда они стали составлять около 100 нанометров, а число транзисторов в чипе больше миллиарда, создавать руками расположение определенного транзистора не предоставляется возможным.

При современном проектировании используются готовые блоки элементов, то есть уже соединенные вместе транзисторы Их объединяют в логические элементы, функциональные узлы/блоки, что позволяет существенно сокращать время на разработку.

Непосредственно сама процедура изготовления микросхем занимает до восьми недель и осуществляется в специальных условиях. Сама интегральная схема это структура, состоящая из нескольких слоев. Слои разделяются на полупроводниковые и металлические. На полупроводниковых слоях находятся транзисторы, на металлических слоях – соединительные элементы и внешние выводы.

На полупроводниковых слоях требуется определить расположение каждого транзистора, указать, какая область будет иметь положительную проводимость, а какая отрицательную.
Кроме транзисторов миниатюрный блок микросхемы включает в себя множество и других активных и пассивных элементов, таких как, например, диоды и резисторы. Их общее число может достигать сотен тысяч, миллионов и даже миллиардов, если рассматривать современные технологии.

В зависимости от количества элементов интегральные микросхемы делятся на следующие виды: малой степени интеграции, средней степени интеграции, большие и сверхбольшие интегральные.

В микросхеме малой степени интеграции, в зависимости от ее функционального назначения, может содержаться до ста пассивных и активных элементов. А в сверхбольшой микросхеме – от десяти тысяч и более, то есть миллионы и миллиарды элементов на одном кристалле полупроводника. Одна микросхема может выполнять функцию узла или целого блока радиоприемника, телевизора, микрокалькулятора или какой-либо электронно-вычислительной машины.

Постоянное уменьшение транзисторов в размерах вызывает трудности при гравировке кристалла, даже при использовании самых современных методов, например, лазера. Меньшее, не всегда лучшее. Существуют транзисторы, размеры которых меньше бактерий, они потребляют настолько мало энергии, что могут быть уязвимыми даже при любом микроскопическом воздействии, которое может их вывести из строя. Например, они могут пострадать от ионизированных частиц космических лучей, возникающих при взрыве сверхновых, которые могут нарушить функциональность транзистора и спровоцировать его ошибочное переключение.

Источник

Наглядное пособие по устройству микросхемы

микросхема что это такое простыми словами

Автора всегда восхищала работа микросхем. Как пластина, некоторые участки которой преднамеренно загрязнены, управляет электронами? И тут внезапно кто-то придумывает наглядное пособие, которое делает принцип действия микросхемы максимально понятным. Именно это произошло на ярмарке самодельщиков в области залива Сан-Франциско.

На стенде «Приоткрываем кремний» Windell Oskay, Lenore Edman, Eric Schlepfer, John McMaster и Ken Shirriff взяли 50-летнюю микросхему и вскрыли её корпус, чтобы любой проходящий мимо и заметивший необычный экспонат мог спросить, что это такое. Микросхема μL914 фирмы Fairchild содержит два элемента ИЛИ-НЕ, и она очень проста, а участки её структуры просто огромны. John McMaster давно занимается вскрытием микросхем и выкладывает результаты на свой сайт. В этот раз, помимо μL914, он вскрыл ещё и ATmega328, и на стенде микроконтроллер мигал светодиодами в таком виде. Посетители могли рассмотреть кристаллы обеих микросхем в микроскоп, но увидеть — это одно, а понять — другое. И вот что помогало им разобраться, на что же они смотрят:

микросхема что это такое простыми словами

микросхема что это такое простыми словами

Многослойная структура из нарезанного лазером оргстекла изображает электроды единичного транзистора. По условным цветовым обозначениям и геометрическим формам легко найти шесть транзисторов в полной модели микросхемы μL914. Теперь по проводникам можно понять, что с чем соединено.

микросхема что это такое простыми словами

Автору в устройстве этой микросхемы особенно понравились резисторы. Один из видов примесей превращает соответствующий участок кристалла в резистор, но что определяет его сопротивление? Оказывается, не концентрация примеси (она тоже влияет, но так регулировать сопротивление непрактично), а толщина и ширина. Поэтому резисторы в микросхеме отличаются друг от друга шириной, и снизу справа на модели показан очень широкий резистор. Наконец, ещё один экспонат на стенде представляет собой огромную действующую модель микросхемы на дискретных транзисторах, где все элементы расположены так же, как на оригинальной топологии. И всё работает, что доказывает правильность проведённого реверс-инжиниринга.

Разработчики наглядного пособия сняли о нём видео, которое не только интересно посмотреть. Оно вдохновляет на изготовление подобных пособий по устройству несложных микросхем.

Источник

Радиолюбитель

Последние комментарии

микросхема что это такое простыми словами

Радиодетали – почтой

Введение в электронику. Микросхемы

Введение в электронику.
Микросхемы

Серия статей известного автора множества радиолюбительских публикаций Дригалкина В.В. для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ Радиолюбитель “

Микросхемы

Микросхема (ИС – Интегральная Схема, ИМС – Интегральная Микросхема, чип или микрочип от английского Chip, Microchip) представляет собой целое устройство, содержащее в себе транзисторы, диоды, резисторы и другие, активные и пассивные элементы, общее число которых может достигать нескольких десятков, сотен, тысяч, десятков тысяч и более. Разновидностей микросхем достаточно много. Наиболее применяемые среди них – логические, операционные усилители, специализированные.

Большая часть микросхем помещена в пластмассовый корпус прямоугольной формы с гибкими пластинчатыми выводами (см. Рис. 1), расположенными вдоль обеих сторон корпуса. Сверху на корпусе есть условный ключ — круглая или иной формы метка, от которой ведется нумерация выводов. Если на микросхему смотреть сверху, то отсчитывать выводы нужно против движения часовой стрелки, а если снизу — то в направлении движения часовой стрелки. Микросхемы могут иметь любое количество выводов.

Маркировка зарубежных ТТЛ-микросхем начинается с цифр 74, например 7400. Условные графические обозначения основных элементов логических микросхем показаны на Рис. 2. Там же приведены таблицы истинности, дающие представление о логике действия этих элементов.

Обозначение символов логических элементов (знаков “&” или “1”) применяется только в отечественной схемотехнике.

ТТЛ-микросхемы обеспечивают построение самых различных цифровых устройств, работающих на частотах до 80 МГц, однако их существенный недостаток – большая потребляемая мощность.
В ряде случаев, когда не нужно высокое быстродействие, а необходима минимальная потребляемая мощность, применяют КМОП-микросхемы, которые используются полевые транзисторы, а не биполярные. Сокращение КМОП (CMOS Complementary Metal-Oxide Semiconductor) расшифровывается как Комплементарный Металло-Оксидный Полупроводник. Основная особенность микросхем КМОП – ничтожное потребление тока в статическом режиме – 0,1…100 мкА. При работе на максимальной рабочей частоте потребляемая мощность увеличивается и приближается к потребляемой мощности наименее мощных микросхем ТТЛ. К КМОП-микросхемам относятся такие известные серии, как К176, К561, КР1561 и 564.

микросхема что это такое простыми словами
Операционные усилители имеют два входа – инвертирующий и неинвертирующий. На схеме обозначаются минусом и плюсом соответственно (см. Рис.3). Подавая сигнал на вход плюс – на выходе получается неизменный, но усиленный сигнал. Подавая его на вход минус, на выходе получается перевернутый, но тоже усиленный сигнал.

При производстве радиоэлектронной продукции использование многофункциональных специализированных микросхем, требующих минимального количества внешних компонентов, позволяет значительно сократить время разработки конечного устройства и производственные затраты. К этой категории микросхем относятся чипы, которые предназначены для чего-то определенного. Например, существуют микросхемы усилителей мощности, стереоприемников, различных декодеров. Все они могут иметь совершенно разный вид. Если одна из таких микросхем имеет металлическую часть с отверстием, это означает, что ее нужно привинчивать к
радиатору.

Со специализированными микросхемами иметь дело куда приятнее, чем с массой транзисторов и резисторов. Если раньше для сборки радиоприемника необходимо было множество деталей, то теперь можно обойтись одной микросхемой.

Источник

Что такое интегральная микросхема

Интегральная схема – это изделие из микроэлементов с высокой миниатюризацией. Эти элементы преобразуют и обрабатывают сигналы. Сама схема имеет высокую плотность самих элементов. Такие элементы называются компонентами и выполняют ту или иную задачу. Эти схемы могут быть разной сложности и типов – от самых простых до сложнейших.

Используются ИС в создании компьютеров, различной вычислительной техники и другом оборудовании, в том числе промышленном и бытовом. Более подробно о строении, использовании, а также развитии интегральных схем будет рассказано в данной статье. В качестве информационного дополнения, в материале содержатся два подробных видеоролика и один скачиваемые файл о строении ИС.

микросхема что это такое простыми словами

Интегральные микросхемы

По научному определению, интегральные микросхемы – это отдельные высокотехнологичные устройства (с огромным количеством электронных компонентов, заключенных в маленьком корпусе), которые выполняют какую-то функцию или действие. Этих функций может быть или одна или несколько. Вот список некоторых основных функций, которые выполняют интегральные микросхемы:

Интегральные микросхемы представляют собой изделие, выполненное в герметизированном (металлическом, пластмассовом, керамическом, металлокерамическом и так лале) корпусе. Микросхемы бывают различного исполнения (прямоугольные, треугольные, круглые) с разным количеством выводов: от трех (например, на стабилизаторе LM7805, до нескольких сотен на процессорах).

Интегральные микросхемы (и аппаратура на них) обладают неоспоримыми преимуществами:

Микросхемы разделяют на два вида: 1 – полупроводниковые интегральные схемы; 2 – гибридные интегральные схемы.

Полупроводниковые интегральные элементы представляют собой кристалл, в глубине которого выполняют все элементы схемы. Изоляция различных элементов осуществляют с помощью (так называемых) «p-n» переходов.

Гибридные интегральные схемы выполняются по «пленочной» технологии и представляют пластину (подложку) из диэлектрического материала. На нее нанесены (в виде пленок) плоские компоненты (резисторы, дроссели, конденсаторы и т. д.) и соединения. Причем сопротивление резисторов может быть 105 Ом, емкость конденсаторов 103 пФ, а дроссели иметь индуктивность около 10 мкГн – не более.

Транзисторы, диоды, магнитные элементы, конденсаторы более 103 пФ и электролитические выполняют с помощью навесного монтажа. Гибридные интегральные схемы имеют более высокую точность параметров (на один или два порядка выше), чем полупроводниковые аналоги. Количество элементов внутри каждого класса микросхем может достигать несколько тысяч.

микросхема что это такое простыми словами

Степень интеграции

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) — до 1 миллиарда элементов в кристалле и гигабольшая интегральная схема (ГБИС) — более 1 миллиарда элементов в кристалле, но в настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС.

Элемент интегральной схемы

Часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т. д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации. Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.

По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:

В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.

Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника. В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов. По функциональным признакам интегральные схемы подразделяют на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т. п.).

Краткая историческая справка

Первые опыты по созданию полупроводниковых интегральных схем были осуществлены в 1953 г., а промышленное производство интегральных схем началось в 1959 г. В 1966 г. был начат выпуск интегральных схем средней степени интеграции (число элементов в одном кристалле до 1000). В 1969 г. были созданы интегральные схемы большей степени интеграции (большие интегральные схемы, БИС), содержащие до 10000 элементов в одном кристалле.

микросхема что это такое простыми словами

К 2000 г. ожидается появление интегральных схем, содержащих до 100 млн МОП транзисторов в одном кристалле (речь идет о цифровых схемах). Система обозначений. Условное обозначение интегральных микросхем включает в себя основные классификационные признаки.

К этим основным элементам обозначений микросхем могут добавляться и другие классификационные признаки.

микросхема что это такое простыми словами

Дополнительная буква в начале четырехэлементного обозначения указывает на особенность конструктивного исполнения:

В начале обозначения для микросхем, используемых в условиях широкого применения, приводится буква К.

Серии бескорпусных полупроводниковых микросхем начинаются с цифры 7, а бескорпусные аналоги корпусных микросхем обозначаются буквой Б перед указанием серии.

Через дефис после обозначения указывается цифра, характеризующая модификацию конструктивного исполнения:

Как создаются интегральные схемы?

Как изготовить чип памяти или процессор компьютера? Процесс производства начинается с химического элемента — кремния, который химически обрабатывается (легируется) для придания различных электрических свойств.

Современное исполнение интегральной схемы (одна из многочисленных форм), установленной на электронной плате устройства. Это далеко не самый продвинутый вариант, а лишь один из многих

Традиционно для нужд электроники используются материалы двух категорий:

микросхема что это такое простыми словами

Принцип легирования химических элементов

Если добавить некоторое количество сурьмы кремнию, структура этого химического элемента насыщается большей массой электронов, чем обычно. Обеспечивается проводимость электричества. Кремний, «легированный» подобным образом, приобретает характеристику N-типа. В другом случае, когда вместо сурьмы добавляется бор, масса электронов кремния уменьшается, оставляя своеобразные «дыры», которые функционируют подобно «отрицательно заряженным электронам».

Благодаря «дырам» положительный электрический ток пропускается в противоположном направлении. Такая разновидность кремния характеризуется P-типом. Расположение областей кремния N-типа и P-типа рядом одна с другой, способствует созданию соединения, где отмечается поведение электронов, характерное для электронных компонентов на основе полупроводников:

микросхема что это такое простыми словами

Структурная интегральная схема внутри чипа

Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.

Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.

Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. Компания «Texas Instruments» спустя год подала заявку на патент.

Тем временем представитель другой компании «Fairchild Semiconductor» — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.

Источник

Микросхема

микросхема что это такое простыми словами

микросхема что это такое простыми словами

Интегра́льная (engl. Integrated circuit, IC, microcircuit, microchip, silicon chip, or chip), (микро)схе́ма (ИС, ИМС, м/сх), чип, микрочи́п (англ. chip — щепка, обломок, фишка) — микроэлектронное устройство — электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус. Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой (МС) — ИС, заключённую в корпус. В то же время выражение «чип компоненты» означает «компоненты для поверхностного монтажа» в отличие от компонентов для традиционной пайки в отверстия на плате. Поэтому правильнее говорить «чип микросхема», имея в виду микросхему для поверхностного монтажа. В настоящий момент (2009 год) большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Содержание

История

Изобретение микросхем началось с изучения свойств тонких оксидных плёнок, проявляющихся в эффекте плохой электро-проводимости при небольших электрических напряжениях. Проблема заключалась в том, что в месте соприкосновения двух металлов не происходило электрического контакта или он имел полярные свойства. Глубокие изучения этого феномена привели к открытию диодов а позже транзисторов и интегральных микросхем.

В 1958 году двое учёных, живущих в совершенно разных местах, изобрели практически идентичную модель интегральной схемы. Один из них, Джек Килби, работал на Texas Instruments, другой, Роберт Нойс, был одним из основателей небольшой компании по производству полупроводников Fairchild Semiconductor. Обоих объединил вопрос: «Как в минимум места вместить максимум компонентов?». Транзисторы, резисторы, конденсаторы и другие детали в то время размещались на платах отдельно, и учёные решили попробовать их объединить на одном монолитном кристалле из полупроводникового материала. Только Килби воспользовался германием, а Нойс предпочёл кремний. В 1959 году они отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов. После того как в 1961 году Fairchild Semiconductor Corporation пустила интегральные схемы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность.

Первая советская полупроводниковая микросхема была создана в 1961 г. в Таганрогском радиотехническом институте, в лаборатории Л. Н. Колесова.

Первая в СССР полупроводниковая интегральная микросхема была разработана (создана) на основе планарной технологии, разработанной в начале 1960 года в НИИ-35 (затем переименован в НИИ «Пульсар») коллективом, который в дальнейшем был переведён в НИИМЭ (Микрон). Создание первой отечественной кремниевой интегральной схемы было сконцентрировано на разработке и производстве с военной приёмкой серии интегральных кремниевых схем ТС-100 (37 элементов — эквивалент схемотехнической сложности триггера, аналога американских ИС серии SN-51 фирмы Texas Instruments). Образцы-прототипы и производственные образцы кремниевых интегральных схем для воспроизводства были получены из США. Работы проводились НИИ-35 (директор Трутко) и Фрязинским заводом (директор Колмогоров) по оборонному заказу для использования в автономном высотомере системы наведения баллистической ракеты. Разработка включала шесть типовых интегральных кремниевых планарных схем серии ТС-100 и с организацией опытного производства заняла в НИИ-35 три года (с 1962 по 1965 год). Ещё два года ушло на освоение заводского производства с военной приёмкой во Фрязино (1967 год).[1]

Уровни проектирования

В настоящее время большая часть интегральных схем разрабатывается при помощи САПР, которые позволяют автоматизировать и значительно ускорить процесс получения топологических фотошаблонов.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции (указано количество элементов для цифровых схем):

В настоящее время название ГБИС практически не используется (например, последние версии процессоров Pentium 4 содержат пока несколько сотен миллионов транзисторов), и все схемы с числом элементов, превышающим 10000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

Вид обрабатываемого сигнала

Аналоговые микросхемы — входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы — входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем ТТЛ-логики при питании +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В соответствует логической единице. Для микросхем ЭСЛ-логики при питании −5,2 В: логическая единица — это −0,8…−1,03 В, а логический ноль — это −1,6…−1,75 В.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов. По мере развития технологий получают всё большее распространение.

Технологии изготовления

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы. В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распротранёнными логиками микросхем. Где небходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества — достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 — сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но наиболее энергопотребляющими и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется фотопроцесс, при этом схему формируют на подложке, обычно из диоксида кремния, полученной термическим оксидированием кремния. Ввиду малости размера элементов микросхем, от использования видимого света и даже ближнего ультрафиолета при засветке давно отказались. В качестве характеристики технологического процесса производства микросхем указывают ширину полосы фотоповторителя и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости c рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами вытравливания и напыления.

В 70-х годах ширина полосы составляла 2-8 мкм, в 80-х была улучшена до 0,5-2 мкм. Некоторые экспериментальные образцы рентгеновского диапазона обеспечивали 0,18 мкм.

В 90-х годах из-за нового витка «войны платформ» экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 90-х процессоры (например ранние Pentium Pro) изготавливали по технологии 0,5-0,6 мкм. Потом их уровень поднялся до 0,25-0,35 мкм. Следующие процессоры (Pentium 2, K6-2+,

В конце 90-х фирма Texas Instruments создала новую ультрафиолетовую технологию с шириной полосы около 0,08 мкм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. Она постепенно продвигалась к нынешнему уровню, совершенствуя второстепенные детали. По обычной технологии удалось обеспечить уровень производства вплоть до 0,09 мкм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 0,045 мкм. Есть и другие микросхемы давно достигшие и превысившие данный уровень (в частности видеопроцессоры и flash-память фирмы Samsung — 0,040 мкм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы 2006 году так и не сбылись.

Сейчас альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 0,032 мкм.

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом — вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Цифровые схемы

Цифровые интегральные микросхемы имеют ряд преимуществ по сравнению с аналоговыми:

Аналогово-цифровые схемы

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах — корпусном и бескорпусном.
Бескорпусная микросхема — это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку.
Корпус — это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями!
В российских корпусах расстояние между выводами измеряется в миллиметрах и наиболее часто это 2,5 мм или 1,25 мм. У импортных микросхем расстояние измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах идентичные корпуса уже несовместимы.
В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Специфические названия микросхем

Из большого количества цифровых микросхем изготавливались процессоры. Фирма Intel 4004, которая выполняла функции процессора. Такие микросхемы получили название микропроцессор. Микропроцессоры фирмы Intel совершенствовались: Intel 8008, Intel 8080, Intel 8086, Intel 8088 (на основе двух последних микропроцессоров фирма персональные компьютеры).

Микропроцессор выполняет в основном функции АЛУ (арифметико-логическое устройство), а дополнительные функции связи с периферией выполнялись с помощью специально для этого изготовленных наборов микросхем. Для первых микропроцессоров число микросхем в наборах исчислялось десятками, а сейчас это набор из двух-трех микросхем, который получил термин чипсет.

Микропроцессоры со встроенными контроллерами памяти и ввода-вывода, ОЗУ и ПЗУ, а также другими дополнительными функциями называют микроконтроллерами.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *