Что образуют верхние слои атмосферы солнца
Атмосфера Солнца
Солнце является одной из значимых звёзд нашей галактической системы под названием Млечный путь. В Солнечной системе это единственное светило, вокруг которого обращаются прочие объекты – спутники, планеты, астероиды, кометы, пыль из космоса. В статье будет рассмотрена атмосфера Солнца и её практическое значение для этого гигантского огненного шара.
Описательные характеристики
Атмосфера Солнца во многом определяется его составом. В нем присутствуют следующие элементы:
1 млн. водородных атомов включает в себя:
На массу светила приходится 99,866% массы всей Солнечной системы. Наша галактическая группа включает в свой состав 100-400 млрд звёзд. При этом 85% их являются менее яркими в сравнении с Солнцем. Как и все они, наше естественное светило производит выработку энергии за счёт реакции термоядерного синтеза. Выработка значительной её части происходит в ходе синтеза водорода, гелия.
Солнце является звездой, расположенной к Земле ближе всего. Средняя удалённость между объектами составляет 149,6 млн км. Значение его орбитальной скорости составляет 217 километров в секунду. На прохождение одного светового года ему требуется 1400 земных лет. На сегодняшний день звезда располагается в области внутреннего края рукава Ориона. Среди всех светил, имеющих отношение к 50-ти наиболее близким системам, Солнце занимает по яркости почётную четвёртую строчку.
Фотосфера
Атмосфера Солнца состоит из нескольких слоёв, одним из них является фотосфера. Она представлена видимой поверхностью, которая извергает базовую часть излучения. Слой обладает толщиной, равной 100-400 км, температурным значением, составляющим 6 600 К (минимум). Именно по этой части происходит определение размеров Солнца. Газ, находящийся здесь, является разреженным, а скоростное значение вращения зависит от конкретной области. В зоне экватора один оборот протекает за 24 дня, в районе полюсов – за 30 дней.
Хромосфера
Солнечная атмосфера представлена также хромосферой. Она является оболочкой, окружающей фотосферу, имеющей толщину в 2000 км. Для верхней границы характерны постоянные горячие выбросы. Эта часть является видимой исключительно во время полного затмения, когда она появляется в красных тонах.
Корона
Эта часть является последней. Для неё характерно присутствует протуберанцев, энергетических извержений. Их выплеск обычно происходит в радиусе сотен тысяч километров, что провоцирует возникновение солнечного ветра. Солнечная атмосфера в этой области имеет более высокую температуру – 1 000 000 К минимум, которая может достигать отметки в 2 000 000 К. В некоторых областях значение повышается до 8-9 тыс. Кельвинов. Однако увидеть эту часть можно исключительно во время солнечного затмения.
Для данной области характерно изменение формы, которое пребывает в зависимости от цикла солнечной активности. На максимуме её форма круглая, на минимуме – вытянутая (вдоль экваториальной части).
Ветер
Солнечная атмосфера имеет такое явление, как ветер, представленный потоком ионизированных элементов, которые выбрасываются из звезды в различных направлениях на скорости от 400 километров в секунду. В качестве источника, из которого исходит ветер, выступает солнечная корона. Её температура настолько высока, что гравитационная сила не может удерживать вещество неподалёку от поверхности, и его часть оказывается в пространстве между планетами. Несмотря на относительную изученность, многие детали, связанные с солнечным ветром, остаются неясными до сих пор.
Таким образом, солнечная атмосфера состоит из нескольких слоёв, различных по толщине, температуре, свойствам.
Атмосфера Солнца и солнечная активность
Урок 25. Астрономия 11 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Атмосфера Солнца и солнечная активность»
Солнечная атмосфера состоит из нескольких слоёв: фотосферы, хромосферы и короны.
Фотосфера — это самый нижний слой солнечной атмосферы. Её толщина не превышает и 300 километров.
Температура фотосферы по мере приближения к её внешнему краю уменьшается с 6600 К до 4400 К. При таких температурах раскалённый газ излучает энергию преимущественно в оптическом диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.
При близком рассмотрении фотосферы можно заметить, что её поверхность состоит как бы из отдельных зёрен — гранул. Это огромные пузыри плазмы, диаметр которых может достигать 700—1000 километров.
Существует одна такая гранула недолго — в среднем 5—10 минут. Затем на её месте появляется новая гранула, которая будет отличаться от прежней по форме и размерам. Процесс постоянного возникновения и исчезновения гранул в фотосфере называется грануляцией.
Наиболее приметными и самыми известными объектами фотосферы Солнца являются солнечные пятна. Их диаметр может достигать 200 000 километров, что существенно больше диаметра нашей планеты. Но есть и маленькие пятна, которые принято называть порами.
Интересно, что первые сообщения о пятнах на Солнце относятся к 800 году до нашей эры. А первые зарисовки солнечных пятен найдены в хронике Иоанна Вустерского 1128 года.
Солнечные пятна — это области «холодного» газа. Их температура примерно на 2000—2500 о С меньше, чем температура окружающей фотосферы. Поэтому на общем фоне поверхности Солнца они выглядят темнее.
Наблюдение за солнечными пятнами в начале XVII века показали, что их положение на Солнце постоянно меняется. Так было установлено, что наша звезда вращается вокруг своей оси. Причём её вращение совпадает с направлением движения планет. Однако период вращения частей Солнца неодинаков. Так на экваторе время полного оборота вокруг оси составляет 25,05 дней. У полюсов же сидерический период увеличивается до 34,3 дня.
Солнечные пятна — это не статичные объекты. Сначала они наблюдаются как маленькие тёмные участки, диаметр которых не превышает 3000 километров. Большинство таких участков в скором времени исчезает. Однако некоторые из них могут увеличиваться в несколько десятков раз, сливаться в большие группы, менять форму и размеры на протяжении нескольких оборотов Солнца.
Возникновение тёмных пятен на Солнце учёные связывают с колебаниями его магнитного поля. Так, в обычных условиях его индукция лишь в 2 раза превышает индукцию магнитного поля Земли. Но иногда в небольшой области возникают концентрированные магнитные поля, индукция которых может достигать 0,5 Тл. Такие мощные поля не дают горячей плазме подняться к поверхности. В результате чего вместо светлых гранул образуется тёмное пятно.
Несмотря на то, что наблюдение за Солнечными пятнами идёт уже не одно столетие, учёные до сих пор не знают механизма и частоту их формирования. 17 января 2017 года стало известно, что учёным Европейской южной обсерватории с помощью самого мощного микроволнового телескопа на Земле «АЛМА» удалось заглянуть «внутрь» солнечного пятна и сделать его снимки на волне 1,25 мм. Они надеются, что в будущем это поможет разгадать тайну этих магнитных структур.
Вместе с тем вблизи пятен, где магнитное поле слабее, конвективные движения усиливаются. И тогда в этих местах появляются хорошо заметные яркие образования — факелы. Факелы имеют сложную волокнистую структуру, а их температура на несколько сотен градусов превышает температуру фотосферы.
Во время полного солнечного затмения вокруг диска Луны бывает видна тонкая полоска красновато-фиолетового или розового цвета. Это хромосфера Солнца.
Её толщина составляет порядка 10 000 километров. А температура вещества в ней увеличивается с высотой от 4000 К до 20 000 К. Несмотря на такую высокую температуру, яркость хромосферы невелика из-за малой плотности вещества в ней.
Основным элементом структуры хромосферы Солнца являются спикулы. Они представляют собой достаточно тонкие, в масштабах Солнца, столбики светящейся плазмы. Одна такая спикула в среднем живёт около 5—10 минут. А её максимальная длина может достигать 20 000 километров. Из-за этого в конце XIX века итальянский астроном Анджело Секки, наблюдая хромосферу в телескоп, сравнил её с горящими прериями.
Самая разреженная и самая горячая оболочка атмосферы Солнца — это солнечная корона. Её толщина составляет несколько радиусов Солнца. А температура плазмы в ней достигает 2 000 000 К.
Корона в основном состоит из протуберанцев и солнечных извержений. Протуберанцы наблюдаются на самом краю солнечного диска. Они похожи на гигантские арки, которые опираются на хромосферу Солнца.
Как правило, в большинстве протуберанцев вещество движется медленно, а время их существования может достигать нескольких месяцев. Но иногда потоки вещества в них начинают довольно быстро двигаться. Говорят, что протуберанец стал активным. Активный протуберанец может жить от нескольких десятков минут до нескольких суток. Затем он либо исчезает, либо превращается в эруптивный протуберанец. Они по внешнему виду напоминают гигантские фонтаны, которые в некоторых случаях бьют на высоту до 2 000 000 километров. Скорость вещества в таких образованиях достигает нескольких сотен километров в секунду.
Облака плазмы, обусловленные солнечными вспышками и корональными выбросами, достигают Земли примерно через двое-трое суток. Они приводят к возникновению геомагнитных бурь на Земле, которые определённым образом влияют на технику и биологические объекты (в том числе и человека).
Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определённой, хотя и не очень строгой периодичностью. Эти периодические изменения солнечной активности называют солнечной цикличностью.
Наиболее известным и лучше всего изученным является солнечный цикл Швабе, длительностью около 11 лет (хотя фактически, колебания циклов происходит в пределах от 7,5 до 16 лет).
Спустя два цикла Швабе (то есть спустя 22 года) магнитное поле Солнца возвращается в своё исходное состояние. Этот цикл получил название цикла Хейла в честь американского астронома Джорджа Эллери Хейла.
Из внешней части солнечной короны истекает солнечный ветер. Он представляет собой непрерывный расширяющийся поток разреженной плазмы, радиально исходящий от Солнца вдоль линий напряжённости магнитного поля и заполняющий собой межпланетное пространство.
Вблизи нашей планеты его скорость составляет порядка 450 км/с, и она увеличивается по мере удаления от Солнца. А плотность солнечного ветра вблизи Земли составляет всего несколько частиц в кубическом сантиметре.
Поток солнечной плазмы не может преодолеть противодействие магнитного поля Земли и обтекает его. При этом образуется полость каплеобразной формы — магнитосфера. Как мы уже знаем, она имеет сложную форму. Со стороны Солнца граница магнитосферы сжата давлением солнечного ветра. С ночной же стороны она вытягивается длинным цилиндрическим хвостом на значительное расстояние, и где заканчивается — неизвестно (хотя некоторые учёные считают, что длина магнитного хвоста Земли составляет порядка 6000 её радиусов).
Небольшая часть захваченных геомагнитным полем заряженных частиц образует вокруг нашей планеты радиационный пояс. Здесь движутся протоны, ионы и электроны, обладающие самой высокой энергией. Эти частицы, попадая из в верхние слои атмосферы в районе полюсов, заставляют светиться её основные составляющие — азот и кислород, вызывая полярные сияния.
В настоящее время для изучения Солнца, помимо земных солнечных телескопов, активно используются космические аппараты. Так, например, 26 октября 2006 года для изучения солнечной активности НАСА вывела на гелиоцентрическую орбиту два одинаковых космических аппарата «СТЕРЕО». Они находятся в разных точках орбиты Земли и позволяют изучать магнитные облака, летящие к Земле, «со стороны».
А 1 февраля 2010 года была запущена космическая обсерватория солнечной динамики. На её борту находится аппаратура, способная получать 12 различных видов изображений Солнца.
А разрешение снимков таково, что учёные могут наблюдать на поверхности Солнца детали с угловым размером 0,6 угловой секунды. В период с 2010 по 2015 годы космической обсерваторией было собрано около 2600 терабайт данных, в том числе более 200 млн фотографий поверхности Солнца.
И последнее. Знаете ли вы, что Солнце светит почти белым светом? Но из-за рассеяния и поглощения коротковолновой части спектра атмосферой Земли прямой свет Солнца у поверхности нашей планеты приобретает желтоватый оттенок.
Строение атмосферы Солнца
Слои атмосферы Солнца
Атмосфера Солнца состоит из трех слоев, между которыми нет резкой границы. Самый близкий к фотосфере и самый плотный, но очень тонкий слой называется обращающим слоем. Следующий, более обширный и более разреженный слой называется хромосферой (от греческого «хромоc», что означает «цвет»). Хромосфера Солнца имеет красноватый оттенок.
Хромосфера видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяжённость хромосферы 10— 15 тыс. километров.
Наконец, третий, самый обширный и разреженный слой атмосферы Солнца называется солнечной короной. Он представляется нам в виде лучистого сияния с перламутровым оттенком.
Фотосфера Солнца начинается на 200—300 км глубже видимого края солнечного диска. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трёхтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.
В фотосфере видна зернистая структура, получившая название грануляции. Характерные угловые размеры гранул, напоминающих по виду рисовые зерна, составляют 1—2′, но линейные их размеры достигают тысячи и более километров. Наблюдения показывают, что грануляция находится в непрерывном движении и изменении: одни гранулы исчезают, а взамен им тут же появляются новые. Средняя продолжительность жизни различных гранул от 5 до 10 мин. Смещение спектральных линий в спектре центральной, более яркой и горячей части гранулы указывает на подъем горячего вещества из-под фотосферы; противоположное смещение линии в спектре более темного и холодного вещества, окаймляющего гранулу, указывает на опускание вещества под фотосферу.
Скорость подъема и опускания газа в слоях солнечной атмосферы составляет около 1 км/с, а разница между температурой горячего и холодного вещества близка к 300 К. Картина грануляции во многом напоминает картину на поверхности кипящей воды — конвекцию. Горячая вода, как более легкая, поднимается снизу вверх, на поверхности она отдает свою энергию в окружающее пространство и, охладившись, опускается вниз. Специальные измерения показали, что поверхность кипящей воды разбивается на ячейки и в каждой горячее вещество поднимается, а по краям более холодное опускается. Таким образом, грануляция на Солнце указывает на то, что энергия в фотосферу поступает из более глубоких и горячих слоев Солнца путем конвекции.
Пятна на Солнце
На ярком фоне фотосферы наблюдаются темные пятна. Такое пятно представляет собой довольно сложное образование, состоящее из центральной темной области, называемой тенью, и окаймляющей ее более светлой области с вытянутыми вдоль радиуса пятна темными и светлыми образованиями, получившей название полутени.
На фоне ослепительно яркой фотосферы пятно нам кажется черным. Однако измерения показали, что яркость пятен в 5—10 раз меньше яркости окружающей горячей фотосферы, а их реальный цвет — красноватый. Эти измерения позволили оценить температуру Т„ вещества в тени пятен. Поскольку поверхность пятен площадью 1 м 2 излучает в 5—10 раз меньше энергии, чем такой же участок фотосферы с температурой Т = 6000 К, то, используя закон Стефана — Больцмана, можно записать:
откуда следует, что температура пятен заключена в пределах от 3400 до 4000 K:
Сильное магнитное поле пятен является причиной их низкой температуры. Это объясняется тем, что вещество фотосферы представляет собой плазму, состоящую из заряженных частиц. Сильное магнитное поле тормозит движение плазмы, замедляет ее конвенцию и тем самым ослабляет поступление энергии из внутренних слоев Солнца. В результате температура вещества в области пятен уменьшается и пятна выглядят темными на фоне яркой фотосферы.
Обычно пятна появляются группами. В группе самое большое головное пятно расположено впереди по направлению вращения Солнца; оно имеет полярность магнитного поля, противоположную полярности следующего за ним меньшего пятна. Кроме того, головное пятно в северном полушарии Солнца имеет полярность, противоположную полярности головного пятна южного полушария.
Наряду с пятнами на фотосфере, вблизи края солнечного диска сравнительно часто видны факелы — светлые образования довольно сложной волокнистой структуры. Некоторые факелы живут неделями. Их яркость незначительно превышает яркость фотосферы, а температура всего лишь на 200— 300 К выше ее температуры.
Солнечная корона
На рисунке показана фотография Солнца, полученная во время полного солнечного затмения 31 июля 1981 г. Экспозиция подобрана таким образом, что заметен тонкий слой хромосферы и внутренняя часть внешней оболочки солнечной атмосферы — короны, имеющей вид лучистого жемчужного сияния, яркость которого в миллион раз меньше яркости фотосферы. На фотоснимках, полученных с большой экспозицией, солнечная корона прослеживается до расстояний в десять и более радиусов Солнца. На данном снимке видна самая яркая часть солнечной короны. Обращают на себя внимание несколько ярких образований, похожих на выбросы, которые получили название протуберанцев.
Температура атмосферы Солнца сначала убывает от 6000 К в фотосфере до 4800 К в нижних слоях хромосферы, а затем начинает резко возрастать в ее верхних слоях и в короне. Средняя температура вещества хромосферы около 20 000 К. Именно благодаря такой высокой температуре в хромосфере возбуждается свечение атомов гелия.
Изучение солнечной короны показало, что она состоит из сильно разреженной плазмы с температурой, близкой к двум миллионам кельвинов (2*10 6 К). Плотность ее вещества в сотни миллиардов раз меньше плотности воздуха у поверхности Земли. В таких условиях нейтральные атомы химических элементов существовать не могут, так как их скорость настолько велика, что при взаимных столкновениях они теряют электроны и многократно ионизуются. Поэтому солнечная корона состоит в основном из протонов, ядер гелия и свободных электронов с незначительными примесями ионов других химических элементов. Этим и объясняется своеобразный спектр солнечной короны: в нем отсутствуют линии водорода, гелия, натрия (свойственные спектру хромосферы), а необычайно слабый, еле заметный непрерывный фон спектра создается электронами, рассеивающими свет фотосферы.
Корона— внешняя разреженная и горячая оболочка Солнца, распространяющаяся от него на несколько солнечных радиусов и имеющая температуру плазмы до миллиона градусов. Яркость солнечной короны в миллион раз меньше, чем фотосферы. Поэтому наблюдать солнечную корону можно во время полных солнечных затмений или с помощью специальных телескопов-коронографов. Внешние слои атмосферы Солнца тянутся вплоть до орбиты Земли.
С высокой температурой короны и разреженностью ее вещества связана разгадка наблюдаемых в ее спектре двух ярких линий — зеленой λ = 5303 Å и красной λ = 6374 Å. Сравнение положений этих линий со спектрами излучения известных химических элементов, полученных в лабораториях, не давало положительных результатов. Астрономы уже имели дело с аналогичной ситуацией, приведшей к открытию гелия. Поэтому сначала ученые предположили существование нового химического элемента, который назвали ко-ронием. Но потом возникло предположение о принадлежности этих линий известному химическому элементу, который, находясь в условиях сильно разреженной короны с высокой температурой, излучает волны, соответствующие наблюдаемым спектральным линиям.
Теоретическое исследование состоянии ионизации и возбуждения атомов химических элементов в физических условиях солнечной короны, проведенное к началу 40-х годов прошлого столетия, показало, что эти две загадочные спектральные линии соответствуют длинам волн, которые излучают атомы железа, находясь в высокой степени ионизации. Зеленая линия принадлежит атому железа, у которого оторвано 13 внешних электронов, а красная линия принадлежит атому железа, у которого оторвано 9 внешних электронов. Дальнейшие исследования показали, что большинство линий излучения короны принадлежит различным элементам, находящимся в состоянии высокой степени ионизации.
Основное число линий излучения короны находится в ультрафиолетовом и рентгеновском диапазонах спектра, а для их наблюдений используют специальные (ультрафиолетовые и рентгеновские) телескопы, установленные на космических научных станциях. Обширный материал по ультрафиолетовому излучению Солнца получен советской солнечной обсерваторией на борту космической станции «Салют».
Как всякая разреженная горячая плазма, солнечная корона интенсивно излучает дециметровые и метровые радиоволны. Радиоизлучение короны было впервые обнаружено во время второй мировой войны. Известный астрофизик Д. Г Мензел в своей книге «Наше Солнце» так описывает это открытие: «Однажды после полудня в 1942 г. все британские радиолокационные станции кругового обзора вышли из строя. Интенсивное высокочастотное радиоизлучение заглушило обычный сигнал локатора. Вначале операторы заподозрили новую контрмеру врага. Но проверка показала, что все радиолокаторы на побережье были направлены в сторону заходящего Солнца».
Детальные исследования радиоизлучения солнечной короны установили ее протяженность до расстояний в несколько десятков радиусов Солнца. Далее она постепенно рассеивается в межпланетном пространстве. Эти исследования подтвердили ничтожную плотность и высокую температуру короны.
Каким же образом вещество солнечной короны нагревается до столь высокой температуры?
Оказывается, к нагреванию короны имеет непосредственное отношение конвекция, наблюдаемая в фотосфере. Здесь опять полезна аналогия конвекции на Солнце с процессами, происходящими в кипящей воде. Если прислушаться к кипящей воде, то можно услышать шум — звуковые волны, которые возбуждаются в воздухе на границе с поверхностью воды ее конвективными движениями. Такие же волны, но в еще больших масштабах возбуждаются конвекцией в фотосфере. Затем эти волны распространяются наружу в хромосферу и корону, унося с собой часть механической энергии конвективных движений. Как и любой волновой процесс, эти волны по мере распространения затухают и особенно эффективно— в короне. Энергия, которую они переносят, и нагревает солнечную корону до высокой температуры в два миллиона кельвинов.
Солнечные протуберанцы
Во время полных солнечных затмений во внутренних слоях солнечной короны наблюдаются протуберанцы — струи горячего вещества, имеющие вид выступов и фонтанов. Плотность вещества протуберанцев значительно больше плотности короны, а температура близка к 10 000 К.
В настоящее время астрономы имеют возможность наблюдать протуберанцы и вне солнечных затмений. Для этого они применяют специальный инструмент — внезатменный коронограф, в котором солнечное затмение искусственно создается заслонкой (искусственной луной). Так как протуберанцы излучают много света в красной водородной линии (Нα), которая практически отсутствует в спектре короны, то внутреннюю область короны фотографируют сквозь специальный светофильтр, пропускающий только излучение, длина волны которого соответствует этой линйи спектра. На таких фотографиях корона почти не видна, а протуберанцы, наоборот, видны отчетливо.
Некоторые протуберанцы, конденсирующиеся в нижних слоях солнечной короны, подолгу, в течение многих часов висят над хромосферой, медленно меняют свой вид и постепенно исчезают, подобно тому как рассеиваются легкие облака в прогретой земной атмосфере в летнее время года. Такие протуберанцы получили название спокойных. Другой вид протуберанцев — эруптивные. Они внезапно, с большой скоростью взлетают над хромосферой, быстро поднимаются до высоты в несколько десятков и даже сотен тысяч километров и также быстро падают обратно.
На рисунке представлена серия фотографий одного из самых грандиозных протуберанцев, который когда-либо наблюдался. Он даже получил имя «Дедушка». Всего почти за 30 мин он поднялся на высоту около 400 000 км, что соответствует скорости вещества примерно в 200 км/с. Наблюдались протуберанцы, которые удалялись на 1,5-10б км от поверхности Солнца. В конце концов вещество протуберанцев или рассеивается в солнечной короне, или падает в хромосферу.
Солнечная корона находится в динамическом равновесии. В нее постоянно поступает плазма из хромосферы, а из короны истекает в межпланетное пространство непрерывный поток частиц (протонов, ядер гелия, ионов, электронов), называемый солнечным ветром. Частицы солнечного ветра покидают солнечную корону со скоростью около 800 км/с, поэтому мощное притяжение Солнца не может их удержать. Вблизи Земли скорость солнечного ветра достигает 500 км/с. Существование такого потока частиц от Солнца предполагали еще в середине XIX в. для объяснения природы кометных хвостов. Прямые измерения состава и скорости частиц солнечного ветра впервые были проведены с борта советской космической станции «Луна-3» в 1959 г.