Что образуется при слиянии мужской и женской клетки

Центр ЭКО в Курске

Мы диагностируем и лечим все формы бесплодия как у женщин, так и у мужчин. Мы используем самые современные медицинские технологии, чтобы осуществить ваше желание стать родителями. Для нас нет ничего невозможного! В клинике «Центр ЭКО» вы получите не только грамотно подобранное лечение, но и психологическую поддержку, и комфортные условия.

Почему пациенты выбирают «Центр ЭКО»?

В клинике «Центр ЭКО» в распоряжении врачей находится самое современное оборудование для проведения наиболее точной диагностики и лечения пациентов. За счет этого клиника обеспечивает высокую эффективность протоколов ЭКО. Специалисты клиники «Центр ЭКО» проведут грамотную консультацию, назначат все необходимые анализы и обследования, чтобы подобрать каждой паре самый оптимальный курс лечения. Клиника «Центр ЭКО» проводит лечение пациентов в рамках программ ЭКО по ОМС.

В нашей клинике ведут прием высококвалифицированные специалисты, постоянно повышающие свою квалификацию и желающие помочь каждому пациенту. Любая семья, обратившаяся к нам в клинику, получает шанс стать счастливыми родителями. Записаться на консультацию в клинику можно, заполнив форму на сайте или позвонив нам по телефону.

Популярные программы ЭКО:

Наша клиника является одной из первых частных клиник России, участвующих в программе государственного финансирования

ЭКО в естественном цикле считается наиболее щадящим способом лечения бесплодия из всех методов вспомогательных репродуктивных технологий.

Источник

Процесс оплодотворения яйцеклетки в подробностях

Понятие беременности подразумевает оплодотворение яйцеклетки, с чего зарождается новая жизнь в женских репродуктивных органах. Как до зачатия, так и в последующем в процесс развития плода постепенно задействуются все органы и системы женщины, создавая благоприятные условия для вынашивания.882

Что образуется при слиянии мужской и женской клетки

Зам. заведующей эмбриологией, к.б.н.

Что образуется при слиянии мужской и женской клетки

Условия оплодотворения

Среди этих условий нет какого-то главного, только при совокупном «удачном» стечении обстоятельств оплодотворение яйцеклетки произойдет. А если самостоятельно не удается «поймать» овуляцию, то ее можно определить с помощью ультрасонографии, на ультразвуковом аппарате визуализируется созревание фолликула.

Стадии оплодотворения

Процесс оплодотворения, управляемый гипоталамусом, проходит несколько этапов до формирования полноценного эмбриона:

Что образуется при слиянии мужской и женской клеткиСтадии оплодотворения

Эмбрион проходит в своем развитии несколько стадий:

Что образуется при слиянии мужской и женской клеткиКак происходит имплантация эмбриона в эндометрий

Что образуется при слиянии мужской и женской клеткиЭтапы имплантации

После оплодотворения яйцеклетки на 7–10 день наступает очередь важнейшего процесса – имплантации, если он не произойдет, то случится выкидыш еще до того, как факт беременности будет установлен.

Для надежного закрепления в эндометрии, трофобласт выбрасывает своеобразные отростки с питательной жидкостью, которые погружает в маточный слой. К этому времени прогестерон уже подготовил эндометрий к внедрению бластоцисты: слой стал достаточно толстым, чтобы окружить имплантированный эмбрион со всех сторон. В свою очередь трофобласт выделяет хорионический гонадотропин, стимулирующий желтое тело к продуцированию прогестерона и предотвращая наступление месячных. Если по каким-то причинам транспортировка зиготы в полость матки нарушена, то зародыш прикрепится в фаллопиевой трубе, то есть наступит внематочная беременность.

По религиозным и социальным представлениям после того, как сперматозоид оплодотворит яйцеклетку, начинается новая человеческая жизнь. Даже более 50% атеистов в России поддерживают данную версию, около 65% верующих, примерно 50% мужчин, 74% женщин.

Особенности процесса оплодотворения

Упрощенно схему оплодотворения яйцеклетки можно представить следующим образом. При естественном интимном контакте мужская семенная жидкость проникает во влагалище, среда которого в силу повышенного рН губительна для большинства сперматозоидов. Но наиболее жизнеспособные сперматозоиды попадают по цервикальному каналу в шейку, затем – в матку.

Мнение врача

Двигаясь против направления тока жидкости, сперматозоиды попадают в фаллопиевы трубы. Поскольку жидкость в трубах течет от яичника к матке, то спермии продвигаются от матки к половой железе. В трубе (в ампулярной части) уже находится яйцеклетка, вышедшая из фолликула, где и происходит оплодотворение, а именно, слияние ядер половых клеток мужчины и женщины. На этом этапе закладывается геном будущего ребенка. В некоторых случаях половая клетка может быть оплодотворена несколькими спермиями (полиспермия), что, как правило, обусловливает нежизнеспособность зиготы. Если процесса оплодотворения не происходит, то эндометрий (функциональный слой) отторгается и вместе с погибшей яйцеклеткой выводится наружу в виде менструации.

Что образуется при слиянии мужской и женской клетки

Врач репродуктолог, акушер-гинеколог

При использовании ВРТ половые клетки и эмбрион проходят те же этапы развития, кроме непосредственно слияния двух гамет, которое осуществляется в лабораторных условиях. Эмбрион также развивается в пробирке в стерильных условиях, пока не достигнет стадии имплантации.

Что образуется при слиянии мужской и женской клеткиЭтапы естественного оплодотворения

Данная статья не может быть использована для постановки диагноза, назначения лечения и не заменяет прием врача.

Источник

Половые клетки человека, хромосомы, оплодотворение

Половые клетки — гаметы (от греч. gametes — «супруг») можно обнаружить уже у двухнедельного эмбриона человека. Их называют первичными половыми клетками. В это время они совсем не похожи на сперматозоиды или яйцеклетки и выглядят абсолютно одинаковыми. Никаких различий, присущих зрелым гаметам, на этой стадии развития зародыша обнаружить у первичных половых клеток не удается. Это не единственная их особенность. Во-первых, первичные половые клетки появляются у зародыша гораздо раньше собственно половой железы (гонады), а во-вторых, они возникают на значительном удалении от того места, где эти железы сформируются позднее. В определенный момент происходит совершенно удивительный процесс — первичные половые клетки дружно устремляются к половой железе и заселяют, «колонизируют» ее.

После того, как будущие гаметы попали в половые железы, они начинают интенсивно делиться, и количество их увеличивается. На этом этапе половые клетки содержат пока то же количество хромосом, что и «телесные» (соматические) клетки — 46. Однако для успешного осуществления своей миссии половые клетки должны иметь в 2 раза меньше хромосом. В противном случае после оплодотворения, то есть слияния гамет, клетки зародыша будут содержать не 46, как установлено природой, а 92 хромосомы. Нетрудно догадаться, что в следующих поколениях их число прогрессивно бы увеличивалось. Чтобы избежать такой ситуации формирующиеся половые клетки проходят специальное деление, которое в эмбриологии называется мейоз (греч. meiosis — «уменьшение»). В результате этого удивительного процесса диплоидный (от греч. diploos — «двойной»), набор хромосом как бы «растаскивается» на составляющие его одинарные, гаплоидные наборы (от греч. haploos — одиночный). В результате из диплодной клетки с 46 хромосомами получаются 2 гаплоидные клетки с 23 хромосомами. Вслед за этим наступает завершающий этап формирования зрелых половых клеток. Теперь в гаплоидной клетке копируются имеющиеся 23 хромосомы и эти копии используются для образования новой клетки. Таким образом, в результате описанных двух делений из одной первичной половой клетки образуется 4 новых.

Причем, в сперматогенезе (греч. genesis — зарождение, развитие) в результате мейоза появляется 4 зрелых сперматозоида с гаплоидным набором хромосом, а в процессе формирования яйцеклетки — в оогенезе (от греч. oon — «яйцо») только одна. Это происходит потому, что образовавшийся в результате мейоза второй гаплоидный набор хромосом яйцеклетка не использует для формирования новой зрелой половой клетки — ооцита, а «выбрасывает» их, как «лишние», наружу в своеобразном «мусорном контейнере», который называется полярным тельцем. Первое деление хромосомного набора завершается в оогенезе выделением первого полярного тельца непосредственно перед овуляцией. Второе репликационное деление происходит только после проникновения сперматозоида внутрь яйцеклетки и сопровождается выделением второго полярного тельца. Для эмбриологов полярные тельца — очень важные диагностические показатели. Есть первое полярное тельце, значит яйцеклетка зрелая, появилось второе полярное тельце — оплодотворение произошло.

Первичные половые клетки, оказавшиеся в мужской половой железе, до поры до времени не делятся. Их деление начинается только в период полового созревания и приводит к образованию когорты так называемых стволовых диплоидных клеток, из которых и формируются сперматозоиды. Запас стволовых клеток в яичках постоянно пополняется. Здесь уместно напомнить описанную выше особенность сперматогенеза — из одной клетки образуется 4 зрелых сперматозоида. Таким образом, после полового созревания у мужчины в течение всей жизни формируются сотни миллиардов новых сперматозоидов.

Формирование яйцеклеток протекает иначе. Едва заселив половую железу, первичные половые клетки начинают интенсивно делиться. К 5 месяцу внутриутробного развития их количество достигает 6-7 миллионов, но затем происходит массовая гибель этих клеток. В яичниках новорожденной девочки их остается не более 1-2 миллионов, к 7-летнему возрасту — всего лишь около 300 тысяч, а в период полового созревания 30 —50 тысяч. Общее же число яйцеклеток, которые достигнут зрелого состояния за период половой зрелости, будет еще меньше. Хорошо известно, что в течение одного менструального цикла в яичнике обычно созревает лишь один фолликул. Нетрудно подсчитать, что в течение репродуктивного периода, продолжающегося у женщин 30 — 35 лет, образуется около 400 зрелых яйцеклеток.

Если мейоз в сперматогенезе начинается в период полового созревания и повторяется миллиарды раз в течение жизни мужчины, в оогенезе формирующиеся женские гаметы вступают в мейоз еще в периоде внутриутробного развития. Причем начинается этот процесс почти одновременно у всех будущих яйцеклеток. Начинается, но не заканчивается! Будущие яйцеклетки доходят только до середины первой фазы мейоза, а дальше процесс деления блокируется на 12 — 50 лет! Лишь с приходом половой зрелости мейоз в оогенезе продолжится, причем не всех клеток сразу, а лишь для 1- 2 яйцеклеток ежемесячно. Полностью же процесс мейотического деления яйцеклетки завершится, как уже было сказано выше, только после ее оплодотворения! Таким образом, сперматозоид проникает в яйцеклетку, еще не завершившую деление, имеющую диплоидный набор хромосом!

Сперматогенез и оогенез — очень сложные и во многом загадочные процессы. Вместе с тем очевидна подчиненность их законам взаимосвязи и обусловленности природных явлений. Для оплодотворения одной яйцеклетки in vivo (лат. в живом организме) необходимы десятки миллионов сперматозоидов. Мужской организм вырабатывает их в гигантских количествах практически всю жизнь.

Вынашивание и рождение ребенка является чрезвычайно тяжелой нагрузкой на организм. Врачи говорят, что беременность — это проба на здоровье. Каким родится ребенок — напрямую зависит от состояния здоровья матери. Здоровье, как известно, не вечно. Старость и болезни, к сожалению, неотвратимы. Природа дает женщине строго ограниченное невосполнимое число половых клеток. Снижение способности к деторождению развивается медленно, но постепенно по наклонной. Наглядное доказательство того, что это действительно так, мы получаем, ежедневно оценивая результаты стимуляции яичников в программах ВРТ. Большая часть яйцеклеток обычно израсходована к 40 годам, а к 50 годам весь их запас полностью исчерпывается. Нередко так называемое истощение яичников наступает значительно раньше. Следует также сказать, что яйцеклетка подвержена «старению», с годами ее способность к оплодотворению снижается, процесс деления хромосом все чаще нарушается. Заниматься деторождением в позднем репродуктивном возрасте рискованно из-за возрастающей опасности рождения ребенка с хромосомной патологией. Типичным примером является синдром Дауна, который возникает из-за оставшейся при делении третьей лишней 21 хромосомы. Таким образом, ограничив репродуктивный период, природа охраняет женщину и заботится о здоровом потомстве.

По каким законам происходит деление хромосом? Как передается наследственная информация? Для того чтобы разобраться с этим вопросом, можно привести простую аналогию с картами. Представим себе молодую супружескую пару. Назовем их условно — Он и Она. В каждой его соматической клетке находятся хромосомы черной масти — трефы и пики. Набор треф от шестерки до туза он получил от своей мамы. Набор пик — от своего папы. В каждой ее соматической клетке хромосомы красной масти — бубны и червы. Набор бубен от шестерки до туза она получила от своей мамы. Набор червей — от своего папы.

Для того чтобы получить из диплоидной соматической клетки половую клетку, число хромосом должно быть уменьшено вдвое. При этом половая клетка обязательно должна содержать полный одинарный (гаплоидный) набор хромосом. Ни одна не должна потеряться! В случае карт такой набор можно получить следующим образом. Взять наугад из каждой пары карт черной масти по одной и таким образом сформировать два одиночных набора. Каждый набор будет включать все карты черной масти от шестерки до туза, однако, какие именно это будут карты (трефы или пики) определил случай. Например, в одном таком наборе шестерка может быть пиковой, а в другом — трефовой. Нетрудно прикинуть, что в примере с картами при таком выборе одиночного набора из двойного мы можем получить 2 в девятой степени комбинаций — более 500 вариантов!

Точно также будем составлять одиночный набор из ее карт красной масти. Получим еще более 500 разных вариантов. Из его одиночного и ее одиночного набора карт составим двойной набор. Он получится мягко сказать «пестреньким»: в каждой паре карт одна будет красной масти, а другая — черной. Общее число таких возможных наборов 500×500, то есть 250 тысяч вариантов.

Примерно также, по закону случайной выборки, поступает и природа с хромосомами в процессе мейоза. В результате из клеток с двойным, диплоидным набором хромосом получаются клетки, каждая из которых содержит одиночный, гаплоидный полный набор хромосом. Предположим, в результате мейоза в вашем теле образовалась половая клетка. Сперматозоид или яйцеклетка — в данном случае не важно. Она обязательно будет содержать гаплоидный набор хромосом — ровно 23 штуки. Что именно это за хромосомы? Рассмотрим для примера хромосому № 7. Это может быть хромосома, которую вы получили от отца. С равной вероятностью она может быть хромосомой, которую вы получили от матери. То же самое справедливо для хромосомы № 8, и для любой другой.

Поскольку у человека число хромосом гаплоидного набора равно 23, то число возможных вариантов половых гаплоидных клеток, образующихся из диплоидных соматических, равно 2 в степени 23. Получается более 8 миллионов вариантов! В процессе оплодотворения две половые клетки соединяются между собой. Следовательно, общее число таких комбинаций будет равно 8 млн. х 8 млн. = 64000 млрд. вариантов! На уровне пары гомологичных хромосом основа этого разнообразия выглядит так. Возьмем любую пару гомологичных хромосом вашего диплоидного набора. Одну из таких хромосом вы получили от матери, но это может быть хромосома либо вашей бабушки, либо вашего дедушки по материнской линии. Вторую гомологичную хромосому вы получили от отца. Однако она опять-таки может быть независимо от первой либо хромосомой вашей бабушки, либо вашего дедушки уже по отцовской линии. А таких гомологических хромосом у вас 23 пары! Получается невероятное число возможных комбинаций. Неудивительно, что при этом у одной пары родителей, рождаются дети, которые отличаются друг от друга и внешностью, и характером.

Кстати, из приведенных выше расчетов следует простой, но важный вывод. Каждый человек, ныне здравствующий, или когда-либо живший в прошлом на Земле, абсолютно уникален. Шансы появления второго такого же практически равны нулю. Поэтому не надо себя ни с кем сравнивать. Каждый из вас неповторим, и тем уже интересен!

Однако вернемся к нашим половым клеткам. Каждая диплоидная клетка человека содержит 23 пары хромосом. Хромосомы с 1 по 22 пару называются соматическим и по форме они одинаковы. Хромосомы же 23-й пары (половые хромосомы) одинаковы только у женщин. Они и обозначаются латинскими буквами ХХ. У мужчин хромосомы этой пары различны и обозначаются ХY. В гаплоидном наборе яйцеклетки половая хромосома всегда только Х, сперматозоид же может нести или Х или Y хромосому. Если яйцеклетку оплодотворит Х сперматозоид, родится девочка, если Y сперматозоид — мальчик. Все просто!

Почему мейоз у яйцеклетки так долго растянут во времени? Каким образом ежемесячно происходит выбор когорты фолликулов, которые начинают свое развитие и как из них выделяется лидирующий, доминантный, овуляторный фолликул, в котором созреет яйцеклетка? На все эти непростые вопросы у биологов нет пока однозначных ответов. Процесс формирования зрелых яйцеклеток у человека ждет новых исследователей!

Образование и созревание сперматозоидов, как уже было сказано, происходит в семенных канальцах мужской половой железы — яичках. Сформированный сперматозоид имеет длину около 50-60 микрон. Ядро сперматозоида находится в его головке. Оно содержит отцовский наследственный материал. За головкой располагается шейка, в которой имеется крупная извитая митохондрия — органоид, обеспечивающий движения хвоста. Иначе говоря, это своеобразная «энергетическая станция». На головке сперматозоида есть «шапочка». Благодаря ей форма головки — овальная. Но, дело не в форме, а в том, что содержится под «шапочкой». «Шапочка» эта на самом деле является контейнером и называется акросомой, а содержатся в ней ферменты, которые способны растворять оболочку яйцеклетки, что необходимо для проникновения сперматозоида внутрь — в цитоплазму яйцеклетки. Если у сперматозоида нет акросомы, головка у него не овальная, а круглая. Эта патология сперматозоидов называется глобулоспермия (круглоголовые сперматозоиды). Но, беда опять не в форме, а в том, что такой сперматозоид не может оплодотворить яйцеклетку, и мужчина с таким нарушением сперматогенеза до начала 90-х прошлого столетия был обречен на бездетность. Сегодня благодаря ВРТбесплодие у этих мужчин может быть преодолено, но об этом мы расскажем позднее в главе, посвященной микроманипуляциям, в частности, ИКСИ.

Перемещение сперматозоида осуществляется за счет движения его хвостика. Скорость движения сперматозоида не превышает 2-3 мм в минуту. Казалось бы, немного, однако, за 2-3 часа в женском половом тракте сперматозоиды проходят путь, в 80000 раз превышающий их собственные размеры! Будь на месте сперматозоида в этой ситуации человек, ему пришлось бы двигаться вперед со скоростью 60-70 км/час — то есть со скоростью автомобиля!

Сперматозоиды, находящиеся в яичке, неподвижны. Способность к движению они приобретают лишь, проходя по семявыводящим путям под воздействием жидкостей семявыводящих протоков и семенных пузырьков, секрета предстательной железы. В половых путях женщины сперматозоиды сохраняют подвижность в течение 3 — 4 суток, но оплодотворить яйцеклетку они должны в течение 24 часов. Весь процесс развития от стволовой клетки до зрелого сперматозоида длится примерно 72 дня. Однако, поскольку сперматогенез происходит непрерывно и в него одномоментно вступает громадное число клеток, то в яичках всегда есть большое количество спермиев, находящихся на разных этапах сперматогенеза, а запас зрелых сперматозоидов постоянно пополняется. Активность сперматогенеза индивидуальна, но с возрастом снижается.

Как мы уже говорили, яйцеклетки находятся в фолликулах яичника. В результате овуляции яйцеклетка попадает в брюшную полость, откуда она «вылавливается» фимбриями маточной трубы и переносится в просвет ее ампулярного отдела. Именно здесь происходит встреча яйцеклетки со сперматозоидами.

Какое же строение имеет зрелая яйцеклетка? Она довольно крупная и достигает 0,11-0,14 мм в диаметре. Сразу после овуляции яйцеклетка окружена скоплением мелких клеток и желатинообразной массой (так называемым лучистым венцом). Видимо, в таком виде фимбриям маточной трубы удобнее захватывать яйцеклетку. В просвете маточной трубы с помощью ферментов и механического воздействия (биения ресничек эпителия), происходит «очистка» яйцеклетки от лучистого венца. Окончательно освобождение яйцеклетки от лучистого венца происходит после встречи ее со сперматозоидами, которые буквально облепляют яйцеклетку. Каждый сперматозоид выделяет из акросомы фермент, растворяющий не только лучистый венец, но и действующий на оболочку самой яйцеклетки. Эта оболочка называется блестящей, так она выглядит под микроскопом. Выделяя фермент, все сперматозоиды стремятся оплодотворить яйцеклетку, но блестящая оболочка пропустит лишь один из них. Получается, что устремляясь к яйцеклетки, воздействуя на нее коллективно, сперматозоиды «расчищают дорогу» только для одного счастливчика. Отбором сперматозоида роль блестящей оболочки не ограничивается, на ранних стадиях развития эмбриона она поддерживает упорядоченное расположение его клеток (бластомеров). В какой-то момент блестящая оболочка становится тесной, она разрывается и происходит хетчинг (от анг. hatching — «вылупление») — вылупление эмбриона. Эмбрион готов к имплантации в эндометрий.

Источник

Что образуется при слиянии мужской и женской клетки

Каждая клетка в организме человека имеет двойной набор хромосом — один от отца и один от матери. Его обозначают «2N» и называют диплоидным. В сперматозоиде и яйцеклетке содержится одинарный набор хромосом, обозначаемый «1N» и называемый гаплоидным.

Процесс образования гаплоидного набора из диплоидного, происходящий при формировании половых клеток, называют мейозом. В пересчёте на количество центромер происходит сначала редукционное деление (мейоз I), а затем эквационное деление (мейоз II). У мужчин мейоз проходит так же, как и у большинства диплоидных видов, а у женщин данный процесс имеет некоторые отличия.

Кроссинговер между хромосомами отца и матери обеспечивает перегруппировку генетической информации между поколениями. Во время оплодотворения происходит слияние гаплоидных наборов хромосом сперматозоида и яйцеклетки, таким образом в зиготе восстанавливается диплоидный набор.

Мейоз I

Мейоз I имеет много общего с митозом, однако это более сложный и продолжительный процесс.
Мейоз первичных сперматоцитов и овоцитов начинается после фазы G2 митоза, а потому они имеют диплоидный набор хромосом (2N), содержащих реплицированную ДНК в составе сестринских хроматид (4С). Профаза I включает обоюдный обмен между хроматидами матери и отца при помощи крос-синговера.

Профаза I

Лептотена. Хромосомы представлены в виде длинных нитей, прикреплённых концами к ядерной оболочке.

Зиготена. Хромосомы сокращаются, образуют пары и гомологи слипаются друг с другом (синапсис). Данный процесс характеризует точное совмещение хромосом (ген к гену на протяжении всего генома). При этом у первичных сперматоцитов хромосомы X и Y образуют синапсис только концами своих коротких плечей.

Что образуется при слиянии мужской и женской клетки

Пахитена. Сестринские хроматиды начинают разделяться. Пары гомологичных хромосом, называемые бивалентами, имеют по четыре двойных спирали ДНК (тетрада). Одна или обе хроматиды каждой из отцовских хромосом скрещиваются с материнскими и образуют синаптонемальный комплекс. Каждая пара хромосом претерпевает хотя бы один кроссинговер.

Диплотена. Происходит разделение хроматид, за исключением участков кроссинговера, или хиазм. Хромосомы всех первичных овоцитов находятся в таком состоянии вплоть до овуляции.

Диакинез. Реорганизованные хромосомы начинают расходиться. В этот момент каждый бивалент содержит четыре хроматиды, соединённые обыкновенными центромерами, и несестринские хроматиды, соединённые хиазмами.

Метафаза I, анафаза 1, тепофаза 1, цитокинез I

Данные стадии мейоза подобны фазам митоза. Основное отличие: вместо разъединения несестринских хроматид происходит распределение по дочерним клеткам парных кроссоверных сестринских хроматид, соединённых центромерами.

В конце мейоза I вторичные сперматоциты и овоциты имеют 23 хромосомы (1N), каждая из которых состоит из двух хроматид (2С).

Мейоз II

При мейозе II возникает кратковременная интерфаза, во время которой не происходит репликации хромосом. Затем следуют профаза, метафаза, анафаза, телофаза и цитокинез. Схожесть каждой фазы мейоза II с подобной ей при митозе заключается в том, что пары хроматид (биваленты), соединённые в области центромер, выстраиваются в линию и образуют метафазную пластинку, а затем расходятся по дочерним клеткам, после чего следует репликация ДНК центромер.

В конце мейоза II в клетках содержится 23 хромосомы (IN), каждая из которых состоит из одной хроматиды (1С).

Что образуется при слиянии мужской и женской клетки

Мейоз у мужчин

Сперматогенезом называют процесс длительностью до 64 дней, включающий все стадии, на протяжении которых сперматогоний превращается в сперматозоид. При этом цитокинез остаётся незавершённым, позволяя каждому поколению клеток быть связанным цитоплазматическими мостиками.

После того как диплоидный первичный сперматоцит проходит стадию мейоза I, возникают два гаплоидных вторичных сперматоцита. Затем следует мейоз II, в результате которого появляются четыре гаплоидные спсрматиды. Во время спермиогенеза сперматиды превращаются в сперматозоиды. Данный процесс включает:
— образование акросомы, содержащей ферменты, которые способствуют проникновению семени;
— конденсацию ядра;
— удаление большей части цитоплазмы;
— формирование шейки, средней части и хвоста.

Мейоз у женщин

Овогенез начинается у плода в возрасте 12 недель и внезапно прекращается к 20-й неделе. Первичные овоциты остаются в форме диплотены профазы I вплоть до овуляции. Данную стадию называют диктиотеной.

Обычно созревает не более одного овоцита в месяц. Под влиянием гормонов первичный овоцит набухает, накапливая цитоплазматический материал. По завершению мейоза I он наследуется одной дочерней клеткой — вторичным овоцитом. Второе ядро переходит в первое направительное тельце, которое обычно не делится и со временем дегенерирует. После окончания мейоза I вторичный овоцит попадает в матку или фаллопиевы трубы.

Мейоз II вторичного овоцита останавливается на стадии метафазы до попадания в него сперматозоида. После этого процесс деления завершается, и образуется большой гаплоидный пронуклеус яйцеклетки, который сливается с пронуклеусом сперматозоида, а также второе направительное тельце, которое дегенерирует.

В зависимости от того, когда произойдёт оплодотворение, продолжительность данного процесса составляет 12—50 лет.

Медицинское значение понимания мейоза

• Диплоидный набор хромосом соматических клеток снижается до гаплоидного в половых клетках.
• Отцовские и материнские хромосомы подвергаются пересортировке, в результате чего количество возможных комбинаций (за исключением рекомбинаций внутри самих хромосом) возрастает до 223 (8 388 608).

• Пересортировка отцовских и материнских аллелей внутри хромосом создаёт между гаметами бесконечное количество генетических вариаций.
• Случайность процесса пересортировки отцовских и материнских аллелей во время мейоза (и оплодотворения) позволяет применять теорию вероятностей к генетическим пропорциям и генетической изменчивости согласно законам Менделя.

• Частота кроссинговера внутри хромосом позволяет предположить относительное расположение того или иного гена.
• Ошибки, возникающие во время конъюгации хромосом и кроссинговера, могут вызвать транслокации, разделение или расхождение хромосом, что часто становится причиной анеуплоидии.

Учебное видео: мейоз и его фазы

Что образуется при слиянии мужской и женской клетки

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

— Вернуться в содержание раздела «генетика» на нашем сайте

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *