Что обозначает q в электротехнике
Буквенные обозначения употребляемых в электротехнике величин
Буквенные обозначения наиболее употребляемых в электротехнике величин (ГОСТ 1494-77)
Наименование величины |
Однофазные автотрансформаторы | ||
TDGC2-0.5 kVa, 2A | АОСН-2-220-82 | |
TDGC2-1.0 kVa, 4A | Латр 1.25 | АОСН-4-220-82 |
TDGC2-2.0 kVa, 8A | Латр 2.5 | АОСН-8-220-82 |
TDGC2-3.0 kVa, 12A | ||
TDGC2-4.0 kVa, 16A | ||
TDGC2-5.0 kVa, 20A | АОСН-20-220 | |
TDGC2-7.0 kVa, 28A | ||
TDGC2-10 kVa, 40A | АОМН-40-220 | |
TDGC2-15 kVa, 60A | ||
TDGC2-20 kVa, 80A |
http://www.gstransformers.com/products/voltage-regulators.html (ЛАТР / лабораторные автотрансформаторы TDGC2)
Пример 2: мощность конденсаторов указывается в Варах (Вольт·Амперах реактивных)
http://www.elcod.spb.ru/catalog/k78-39.pdf (конденсаторы K78-39)
http://www.kvar.su/produkciya/25-nizkogo-napraygeniya-vbi (конденсаторы УК)
Пример 3: технические данные электромоторов содержат активную мощность (кВт) и cosФ
http://www.mez.by/dvigatel/air_table2.shtml (двигатели АИР)
http://www.weiku.com/products/10359463/Stainless_Steel_cutting_machine.html
(комбинированная нагрузка – станок плазменной резки стали / Inverter Plasma cutter LGK160 (IGBT)
Технические данные разрядных ламп содержат активную мощность (кВт) и cosФ
http://www.mscom.ru/katalog.php?num=38 (лампы ДРЛ)
http://www.silverstonetek.com.tw/product.php?pid=365&area=en (блок питания ПК)
Дополнение 1
Поэтому во многих странах приняты стандарты нормирующие коэффициент мощности оборудования.
Дополнение 2
Дополнение 3. Важное замечание относительно коэффициента мощности ИБП и стабилизаторов напряжения
Нагрузочная способность ИБП и ДГУ нормирована на стандартную промышленную нагрузку (коэффициент мощности 0.8 с индуктивным характером). Например, ИБП 100 кВА / 80 кВт. Это означает, что устройство может питать активную нагрузку максимальной мощности 80 кВт, или смешанную (активно-реактивную) нагрузку максимальной мощности 100 кВА с индуктивным коэффициентом мощности 0.8.
В стабилизаторах напряжения дело обстоит иначе. Для стабилизатора коэффициент мощности нагрузки безразличен. Например, стабилизатор напряжения 100 кВА. Это означает, что устройство может питать активную нагрузку максимальной мощности 100 кВт, или любую другую (чисто активную, чисто реактивную, смешанную) мощностью 100 кВА или 100 кВАр с любым коэффициентом мощности емкостного или индуктивного характера. Обратите внимание, что это справедливо для линейной нагрузки (без высших гармоник тока). При больших гармонических искажениях тока нагрузки (высокий КНИ) выходная мощность стабилизатора снижается.
Дополнение 4
Наглядные примеры чистой активной и чистой реактивных нагрузок:
=100 ВА=100 ВАр, PF=0 => вся электрическая мощность реактивная, а значит она постоянно циркулирует от источника к нагрузке и обратно, опять к нагрузке и т.д.
Дополнение 5
Для обозначения преобладающего реактивного сопротивления (индуктивного либо ёмкостного) коэффициенту мощности приписывается знак:
+ (плюс) – если суммарное реактивное сопротивление является индуктивным (пример: PF=+0.5). Фаза тока отстаёт от фазы напряжения на угол Ф.
— (минус) – если суммарное реактивное сопротивление является ёмкостным (пример: PF=-0,5). Фаза тока опережает фазу напряжения на угол Ф.
Дополнение 6
В различных областях техники мощность может быть либо полезной, либо паразитной НЕЗАВИСИМО от того активная она или реактивная. Например, необходимо различать активную полезную мощность рассеиваемую на рабочей нагрузке и активную паразитную мощность рассеиваемую в линии электропередачи. Так, например, в электротехнике при расчете активной и реактивной мощностей наиболее часто активная мощность является полезной мощностью, передаваемой в нагрузку и является реальной (не мнимой) величиной. А в электронике при расчёте конденсаторов или расчёте самих линий передач активная мощность является паразитной мощностью, теряемой на разогрев конденсатора (или линии) и является мнимой величиной. Причём, деление на мнимые и немнимые величины производится только для удобства рассчётов. На самом деле, все физические величины конечно реальные.
Дополнительные вопросы
Вопрос 1:
Почему во всех учебниках электротехники при расчете цепей переменного тока используют мнимые числа / величины (например, реактивная мощность, реактивное сопротивление и др.), которые не существуют в реальности?
Ответ:
Да, все отдельные величины в окружающем мире – действительные. В том числе температура, реактивное сопротивление, и т.д. Использование мнимых (комплексных) чисел – это только математический приём, облегчающий вычисления. В результате вычисления получается обязательно действительное число. Пример: реактивная мощность нагрузки (конденсатора) 20кВАр – это реальный поток энергии, то есть реальные Ватты, циркулирующие в цепи источник–нагрузка. Но что бы отличить эти Ватты от Ваттов, безвозвратно поглащаемых нагрузкой, эти «циркулирующие Ватты» решили называть Вольт·Амперами реактивными [6].
Замечание:
Раньше в физике использовались только одиночные величины и при расчете все математические величины соответствовали реальным величинам окружающего мира. Например, расстояние равно скорость умножить на время (S=v*t). Затем с развитием физики, то есть по мере изучения более сложных объектов (свет, волны, переменный электрический ток, атом, космос и др.) появилось такое большое количество физических величин, что рассчитывать каждую в отдельности стало невозможно. Это проблема не только ручного вычисления, но и проблема составления программ для ЭВМ. Для решения данное задачи близкие одиночные величины стали объединять в более сложные (включающие 2 и более одиночных величин), подчиняющиеся известным в математике законам преобразования. Так появились скалярные (одиночные) величины (температура и др.), векторные и комплексные сдвоенные (импеданс и др.), векторные строенные (вектор магнитного поля и др.), и более сложные величины – матрицы и тензоры (тензор диэлектрической проницаемости, тензор Риччи и др.). Для упрощения рассчетов в электротехнике используются следующие мнимые (комплексные) сдвоенные величины:
Вопрос 2:
На странице http://en.wikipedia.org/wiki/Ac_power показаны S P Q Ф на комплексной, то есть мнимой / несуществующей плоскости. Какое отношение это все имеет к реальности?
Ответ:
Проводить расчеты с реальными синусоидами сложно, поэтому для упрощения вычислений используют векторное (комплексное) представление как на рис. выше. Но это не значит, что показанные на рисунке S P Q не имеют отношения к реальности. Реальные величины S P Q могут быть представлены в обычном виде, на основе измерений синусоидальных сигналов осциллографом. Величины S P Q Ф I U в цепи переменного тока «источник-нагрузка» зависят от нагрузки. Ниже показан пример [5] реальных синусоидальных сигналов S P Q и Ф для случая нагрузки состоящей из последовательно соединённых активного и реактивного (индуктивного) сопротивлений.
Вопрос 3:
Обычными токовыми клещами и мультиметром измерен ток нагрузки 10 A, и напряжение на нагрузке 225 В. Перемножаем и получаем мощность нагрузки в Вт: 10 A · 225В = 2250 Вт.
Ответ:
Вы получили (рассчитали) полную мощность нагрузки 2250 ВА. Поэтому ваш ответ будет справедлив только, если ваша нагрузка чисто активная, тогда действительно Вольт·Ампер равен Ватту. Для всех других типов нагрузок (например электромотор) – нет. Для измерения всех характеристик любой произвольной нагрузки необходимо использовать анализатор сети, например APPA137:
См. дополнительную литературу, например:
[4]. AC power, Power factor, Electrical resistance, Reactance
http://en.wikipedia.org (перевод: http://electron287.narod.ru/pages/page1.html)
[5]. Теория и расчёт трансформаторов малой мощности Ю.Н.Стародубцев / РадиоСофт Москва 2005 г. / rev d25d5r4feb2013
[6]. Международная система единиц, СИ, см напр. ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН
Что обозначает q в электротехнике
ГОСТ 1494-77*
(СТ СЭВ 3231-81)
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Буквенные обозначения основных величин
Electrotechnics. Letter symbols for fundamental quantities
Дата введения 1978-07-01
Постановлением Государственного комитета стандартов Совета Министров СССР от 16 сентября 1977 г. N 2233 срок введения установлен с 01.07.78
* ПЕРЕИЗДАНИЕ (январь 1987 г.) с Изменением N 1, утвержденным в мае 1983 г.; Пост. N 2174 от 06.05.83 (ИУС 8-83).
Настоящий стандарт устанавливает буквенные обозначения основных электрических и магнитных величин.
Буквенные обозначения, установленные в настоящем стандарте, обозначены для применения в документации всех видов, учебниках, учебных пособиях технической и справочной литературе.
Стандарт полностью соответствует СТ СЭВ 3231-81, Публикациям МЭК 27-1, 27-1a и 27-2 и рекомендации ИСО/Р31.
В стандарте дано справочное приложение 5, содержащее таблицы величин, расположенных в алфавитном порядке, их буквенных обозначений.
(Измененная редакция, Изм. N 1).
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. В качестве буквенных обозначений величин должны применяться буквы латинского и греческого алфавитов при необходимости с нижними и (или) верхними индексами.
1.2. Буквенные обозначения величин латинскими буквами должны выполняться наклонным шрифтом (курсивом), например:
— напряженность магнитного поля.
1.3. Для указания векторного характера величины буквенное обозначение должно выполняться полужирным шрифтом, например:
— вектор напряженности магнитного поля.
Допускается взамен выполнения обозначения полужирным шрифтом помещать над буквенным обозначением величин стрелку, например:
— вектор напряженности магнитного поля.
1.4. Для указания на тензорный характер величины ее буквенное обозначение должно быть заключено в круглые скобки, например:
1.5. Величины, изменяющиеся во времени, обозначают одним из способов, указанных в табл.1.
Обозначение величины способом
Обозначение мгновенных значений величин
Абсолютное мгновенное значение
Значение положительного пика*
Значение отрицательного пика**
Значение разности положительного и отрицательного пиков
Обозначение средних значений величин
Среднее арифметическое значение
Среднее квадратическое (действующее) значение
Среднее геометрическое значение
Среднее гармоническое значение
Среднее абсолютное значение
Обозначение величин, входящих в состав сложной величины
Медленноменяющаяся составляющая, периодическая и непериодическая
Обозначение мгновенных или средних значений составляющей
Максимальное значение переменной составляющей
Значение положительного пика переменной составляющей
Среднее абсолютное значение переменной составляющей
Обозначение составляющей порядка « » ряда Фурье
Среднее квадратическое значение
2. В обозначении величин, входящих в состав сложной величины, а и b использованы для примера.
3. В обозначении мгновенных или средних значений составляющей индексы, обозначающие ее мгновенное или среднее значение, ставятся после индексов, определяющих составляющую.
Для обозначения изменяющегося среднего значения к символу среднего значения должно быть добавлено обозначение ( ). Например, для изменяющегося среднего арифметического значения:
;
для изменяющегося среднего квадратичного значения:
.
(Измененная редакция, Изм. N 1).
1.7. Комплексные величины, изменяющиеся по синусоидальному закону, обозначают, как указано в табл.2.
Электрическое напряжение. Определение, объяснение простыми словами, единица измерения, формула
Одним из самых фундаментальных терминов в электротехнике является термин «электрическое напряжение». В этой статье мы объясним, что это такое и как его рассчитать.
Объяснение простыми словами
Электрическое напряжение U является той самой причиной, которая «заставляет» протекать электрический ток I. Электрическое напряжение всегда возникает, когда заряды разделены друг от друга, то есть все отрицательные заряды на одной стороне, а все положительные — на другой. Если соединить эти две стороны электропроводящим материалом, потечет электрический ток.
Общепринятое определение термина «электрическое напряжение».
Электрическое напряжение (или просто напряжение) — это разность потенциалов между двумя точками в электрическом поле. Это движущая сила для электрического заряда.
Потенциал в электрическом поле — это энергия заряженного тела, не зависящая от его электрического заряда. Для пояснения вы можете посмотреть на сравнение с водяным контуром чуть ниже в статье.
Есть другое определение (из учебника по физике 8 класса):
Напряжение — это физическая велuчuна, характеризующая электрическое поле. Электрическое напряжение между двумя точками электрического поля численно равно работе, совершенной при переносе между ними заряда 1 Кл силами электрического поля.
Сравнение с использованием модели протекания воды.
Хорошей аналогией, которая поможет вам представить себе электрическое напряжение и потенциал, является водяной контур. В этой схеме у вас есть два бассейна на разной высоте, которые соединены трубой. В этой трубе вода может перетекать из верхнего бассейна в нижний. Затем вода перекачивается обратно в верхний бассейн с помощью насоса, как показано на рисунке ниже.
Электрическое напряжение — сравнение с использованием модели протекания воды
В своих размышлениях вы теперь легко можете сравнить насос с источником электрического напряжения. Кроме того, поток воды можно сравнить с электрическим током. Насос транспортирует воду из нижнего бассейна в верхний. Оттуда она самостоятельно течет обратно в нижний бассейн. В данном примере насос является приводом для потока. Чем больше разница в высоте, тем сильнее поток. Решающим фактором является потенциальная энергия верхнего бассейна. Вы можете сравнить разность энергий двух бассейнов с разностью электрических потенциалов. Проще говоря, большая разница в высоте соответствует большему электрическому напряжению.
Формула
Формула для электрического напряжения U, согласно закона Ома для участка цепи, имеет вид
Как видно из этой формулы, если электрическое напряжение остается неизменным, то чем больше электрическое сопротивление (R), тем меньше сила тока (I).
Другая формула для расчета электрического напряжения такова:
То есть электрическое напряжение U равно мощности деленной на силу тока I.
Единица измерения электрического напряжения
Единицей измерения электрического напряжения в СИ является Вольт, сокращенно В (в честь итальянского учёного А. Вольта).
1 вольт (1 В) — это напряжение между двумя точками электрического поля, при переносе между которыми заряда 1 Кл совершается работа 1 Дж.
[U] = 1 В
Теперь вы можете объяснить смысл надписи 4,5 В или 9 В на круглой или плоской батарейке. Смысл в том, что при переносе с одного полюса источника на другой (через спираль лампочки или другой проводник) заряда 1 Кл силами электрического поля может быть совершена работа соответственно 4,5 Дж или 9 Дж.
Вы можете преобразовать отдельные единицы измерения следующим образом:
1 В = 1000 мВ, 1 мВ = 1000 мкВ, 1 МВ = 1000 кВ, 1 кВ = 1000 В.
Электрическое напряжение в цепи
Для источников напряжения в схемах обычно используется один из следующих символов.
Источники напряжения и электрическая цепь
Источник напряжения всегда имеет два соединения/полюса. Полюс «плюс» и полюс «минус». Само напряжение обозначено стрелкой напряжения (UQ). Для источников оно всегда отображается от плюса к минусу.
Электрическое напряжение, падающее на резисторе, также можно обозначить стрелкой напряжения (на схеме обозначена как красная стрелка UR ). Это указывает на техническое направление электрического тока.
Также часто можно услышать термин «напряжение холостого хода» или «напряжение источника». Это выходное напряжение ненагруженного источника, т.е. источника, к которому ничего не подключено. Если цепь замкнута с нагрузкой, то можно измерить только напряжение на полюсах источника.
Электрические напряжения при последовательном и параллельном соединении
У нас уже есть статья о последовательном и параллельном соединении проводников, в котором мы обсуждаем эту тему более подробно. Поэтому здесь мы рассмотрим лишь некоторые основы.
При последовательном соединении компоненты подключаются в ряд.
Электрическое напряжение при последовательном соединении
Здесь электрическое напряжение источника делится на резисторы. Этот момент также описывается вторым правилом Кирхгофа. Здесь применимо следующее:
то есть напряжение источника равно сумме электрических напряжений на отдельных резисторах. Напряжение источника по-разному распределяется по разным резисторам.
В электрической цепи с параллельным соединением компоненты расположены, соответственно, параллельно друг относительно друга. Это можно увидеть на следующей схеме.
Электрическое напряжение в параллельной цепи
Здесь гораздо проще определить электрические напряжения на резисторах, так как при параллельном соединении:
Поэтому электрическое напряжение на резисторах такое же высокое, как и электрическое напряжение источника.
Измерение электрического напряжения
Приборы для измерения напряжения, также называемые вольтметрами, всегда подключаются параллельно потребителю, на котором необходимо измерить электрическое напряжение.
Одним из наиболее часто используемых вольтметров является цифровой мультиметр (DMM), поэтому мы покажем вам процедуру измерения напряжения с помощью DMM. Сначала необходимо установить тип электрического напряжения (DC — постоянный ток или AC — переменный ток).
Для постоянного тока необходимо обратить внимание на правильную полярность, т.е. подключить плюс к положительному полюсу. На следующем этапе необходимо выбрать правильный диапазон измерения. Если вы не можете оценить, насколько велика измеряемая величина, установите наибольший возможный диапазон и двигайтесь от него вниз, пока не найдете нужный. Наконец, вам нужно только «считать» электрическое напряжение прибором.
Примеры типовых значений электрического напряжения
Для некоторых применений соответствующее электрическое напряжение можно найти в таблице ниже.
Светодиод | 1,2 — 1,5 В |
Зарядное устройство USB | 5 В |
Напряжение автомобильного аккумулятора | 12, 4 — 12,8 В |
Напряжение в розетке (среднеквадратичное или действующее значение) | 230 В |
Высоковольтные линии электропередач (ЛЭП) | 60 кВ — 1 МВ |
Вы можете видеть, что на высоковольтных линиях присутствует напряжение до мегавольт. Такие большие электрические напряжения используются для того, чтобы уменьшить потери в длинных линиях.
Решающим фактором для потребителя является мощность P, которую можно рассчитать для постоянного напряжения с помощью формулы:
P = U * I
Это означает, что электрический ток I так же важен для потребителя, как и электрическое напряжение. Согласно закону Ома, зависимость между током и напряжением имеет вид:
Если напряжение остается неизменным, сопротивление определяет величину тока. Чтобы проиллюстрировать это, представьте следующее. У вас есть три разных бассейна, которые заполнены одинаковым количеством воды. Каждый бассейн имеет слив, который различается по сечению, т.е. в одном бассейне сливная труба очень маленькая, а в другом — очень большая.
Постоянное электрическое напряжение можно определить по тому, что все емкости заполнены на одинаковую высоту. Если слив узкий в нижней части, он представляет собой большое сопротивление. Ток здесь может течь только медленно. Если сечение сливной трубы больше, то сопротивление меньше и, соответственно, может протекать больший ток.
- маменори в роллах что это такое
- Сенадексин и сенаде чем отличаются