Что обеспечивает ядро в растительной клетке
Ядро растительной клетки: строение и функции
Содержание:
В большинстве случаев на одну клетку приходится одно ядро, но есть и исключения. Клетки грибницы некоторых грибов содержат два ядра, а проводящие ситовидные трубки высших растений не имеют таковых вообще, хотя являются живой частью. Возможно наличие более двух ядер в одной клетке – полиплоидия.
Внешнее строение
Внешне ядро чаще всего напоминает шар или эллипс. В зависимости от строения самой клетки, форма может значительно вытягиваться и становиться веретеновидной. Сначала оно располагается в центре растительной клетки, но в процессе старения смещается к периферии, ближе к клеточной стенке, из-за увеличивающейся вакуоли. В делящихся клетках ядро занимает до половины объема самой клетки.
Внутреннее строение
Все эукариотические ядра состоят из следующих структур и компонентов:
Химический состав ядер одинаков у представителей всех царств. Оно содержит практически всё Дезоксирибонуклеиновые кислоты клетки. Помимо ДНК, в жидкой части ядра также есть три виды РНК:
Внутри ядра находится кариоплазма (или нуклеоплазма) – основное содержимое важнейшего органоида. Имеет вид бесцветной жидкости. В ней свободно расположены хроматин, рибосомы, ядрышки, молекулы тРНК и иРНК и специфических ферментов. Эти ферменты участвуют в процессах метаболизма, синтеза и транспортировки РНК.
Хроматин – активная форма хромосом. Находится в ядре в формате тонких извилистых нитей, фибрилл, и гранул. Это функционирующая фаза генетического аппарата. Причем фибриллы более активны, чем гранулы. Выделяют два типа хроматина:
Ядрышки (обычно 1-3 структур) располагаются в кариоплазме свободно и не имеют собственной оболочки, поэтому граница нечеткая. В их состав входят молекулы рРНК и ДНК, белки. Причем молекулы ДНК соединены с особыми белками – гистонами. Главной функцией выделяют синтез рибосомальной РНК, которые через поры попадают в цитоплазму для формирования субъединиц рибосом. Содержимое ядрышка можно разделить на фибриллярный и гранулярный компонент. Первый образован упакованными фибриллами, а второй похож на напоминает субъединицы рибосом.
Дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Это высокополимерные структуры, состоящие из сахара, азотистого основания и фосфорного остатка. Несмотря на схожее строение, выделяют следующие отличия:
Строение растительной клетки и ее функции
Мир растений: Freepick
Как строение растительной клетки обеспечивает ее жизнь, из чего она состоит и что содержит? Эта крохотная базовая структура каждого растительного организма отличается от животных клеток и способна сама создавать органические вещества. Познакомимся с уникальным творением природы.
Строение растительной клетки
Клетка растения — самая малая его структурная единица, а в некоторых случаях — единственная. Так, в природе растения бывают как многоклеточными, так и одноклеточными. К группе последних принадлежат многие водоросли, у которых всего одна клетка представляет собой полноценный живой организм.
В то же время многоклеточное растение — это не просто набор клеток, а единый организм, в котором есть различные ткани и органы, взаимодействующие друг с другом.
Существует базовое строение клетки растения, то есть те компоненты, которые всегда присутствуют в клетках данного типа. Основной состав растительной клетки таков:
Рассмотрим особенности строения растительной клетки подробнее.
Строение растительной клетки: Freepick
Растительная клетка: строение внешней части
В отличие от животных у растений каждая клетка отделена от окружающей среды двумя барьерами, а именно:
Клетки растений внутри: цитоплазма
Внутри растительных клеток находится специфическое полужидкое вещество, которое называют цитоплазмой. Оно состоит из воды, веществ минеральной и органической природы.
В цитоплазме находятся и взаимодействуют друг с другом все органоиды. Таким образом, она поле для протекания всех биохимических процессов.
Клеточное строение растений: органоиды
Клетка живет и выполняет все свои функции благодаря органоидам — крошечным структурам с уникальным строением.
Главный органоид каждой клетки — ядро:
Кроме ядра, клетки растений содержат:
Размеры растительных клеток варьируются от одного до десятков тысяч микрометров, а вот их наполнение в большинстве случаев практически одинаково.
Растительная клетка: особенности и функции
Разнообразные растения: Freepick
Биологи не случайно поделили клетки на растительные и животные. Несмотря на схожесть, есть у них и заметные отличия. Растительная клетка уникальна благодаря тому, что:
Остальные органоиды и компоненты у растительной и животной клетки очень похожи. Почему сформировались именно такие особенности строения клеток растений? Они обусловлены их образом жизни и тем, как растения питаются.
В большинстве своем растения известны неподвижным (прикрепленным) образом жизни: они не могут активно двигаться, чтобы находить новые источники питания или более благоприятные условия существования.
Выживают с помощью захвата воды и других необходимых веществ путем диффузии из окружающей среды, а также самостоятельно синтезируют углеводы в хлоропластах.
То есть функции растительной клетки таковы:
Теперь вам известно не только строение растительной клетки, но и предназначение всех ее структурных компонентов. Природа создала совершенное творение: такая крошечная клетка бесперебойно работает, словно настоящая биохимическая лаборатория.
Уникальная подборка новостей от нашего шеф-редактора
Ядро растительной клетки
Ядро является самым крупным клеточным органоидом.
Но в живых клетках при рассматривании в световой микроскоп ядро обычно плохо видно, так как оно преломляет свет лишь немногим более, чем окружающая цитоплазма. Размеры ядра очень изменчивы и зависят от вида растения, типа, возраста и состояния клетки. Так, у грибов ядра обычно мелкие, диаметром порядка 0,5—1,0 мк. У вегетативных клеток высших растений размеры ядра колеблются в среднем от 5 до 25 мк, причем у однодольных ядра обычно крупнее, чем у двудольных, и у голосеменных— крупнее, чем у покрытосеменных. Наиболее крупные ядра (до 500 мк) встречаются у половых клеток голосеменных растений.
Форма ядра при рассматривании его в световой микроскоп чаще всего шаровидная, например у эмбриональных клеток, но может меняться в широких пределах в зависимости от формы клетки и состояния цитоплазмы. У длинных узких клеток ядра обычно сплюснутые, чечевицеобразные или вытянутые, веретенообразные. Форма ядра может изменяться под влиянием движения цитоплазмы (деформация). Исследования в электронном микроскопе показали, что довольно часто ядро принимает амебовидную форму; в нем образуются неправильные лопасти различной длины или довольно сильные углубления. В этих углублениях могут скапливаться и митохондрии. Такая «разветвленность» ядра ведет к увеличению ядерной поверхности, что имеет большое значение для повышения интенсивности взаимодействия между ядром и цитоплазмой.
В отличие от других органоидов, число которых в клетке обычно довольно велико, живая клетка, как правило, имеет только одно ядро. Однако клетки грибницы многих высших грибов двуядерны, многоядерны клетки некоторых водорослей и низших грибов. У высших растений сильно вытянутые клетки, образующие лубяные волокна, также содержат по нескольку ядер. Часто двуядерными бывают клетки так называемого выстилающего слоя пыльников. Единственным типом клеток, которые остаются живыми и во взрослом состоянии не содержат ядра, являются клетки, проводящие пластические вещества (ситовидные трубки), но живут эти клетки очень недолго, обычно один вегетационный период.
Клетка из молодого листочка околоцветника дрока испанского
Типы структуры неделящегося ядра после фиксации и окраски
Предполагают, что хроматиновая сеть и хромоцентры представляют собой структурные видоизменения хромосом, становящихся заметными при переходе клетки и ядра к делению. В неделящемся ядре хромосомы сильно гидратированы и деопирализованы и образуют в ядерном соке почти невидимую сеть. Нити хроматина представляют собой хромосомы в состоянии раскручивания и набухания, а хромоцентры — более концентрированные зоны, в которых упаковка и закручивание хромосомного материала сохраняются и в неделящемся ядре. Такое диффузное распределение хромосомного материала наилучшим образом соответствует важнейшей роли хромосом в жизни клетки.
Как и цитоплазма, ядро представляет собой коллоидную систему, но более вязкой консистенции. По химическому составу оно заметно отличается от цитоплазмы, причем отдельные компоненты ядра химически различны. Наиболее важными в составе ядра являются нуклеиновые кислоты: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), причем первая в ядре преобладает и обычно не содержится в цитоплазме. Нуклеиновые кислоты — высокополимерные соединения, в состав молекул которых входят особый сахар, фосфорная кислота и азотистые основания. ДНК отличается от РНК типом сахара, атомным весом и строением молекул.
Применение электронного микроскопа для изучения этого важнейшего органоида пока не принесло крупных успехов. Поэтому проблема тонкого строения ядра еще очень далека от разрешения. Эти неудачи, вероятно, связаны с тем, что структуры ядра как центрального органоида имеют более тонкое и нежное строение и поэтому требуют особых методов фиксации и приготовления препаратов.
Схема строения ядерной оболочки
Ядерная оболочка часто постоянно или временно связана с другими клеточными органоидами, особенно с эндоплазматической сетью цитоплазмы. В последнем случае наружная мембрана
Функции ядра
Ядро — центральный органоид клетки. Если его удалить из клетки, то она отмирает. С другой стороны, одно ядро не может самостоятельно существовать без других органоидов, так как оно зависит от них в энергетическом отношении, получая от них энергию. Одна из важнейших функций ядра состоит в том, что оно передает в систему цитоплазмы ту информацию, которая определяет направление синтеза белков и других веществ в клетке. Механизм передачи этой информации раскрыт совсем недавно и вкратце состоит в следующем. Молекулы ДНК ядра являются как бы шаблоном, в котором закодированы особенности молекул РНК. РНК, синтезированная в ядре, может временно накапливаться в ядрышке. Затем она переходит в цитоплазму, где связывается с рибосомами. Эта РНК и направляет синтез белка, осуществляемый рибосомами цитоплазмы. Благодаря этому, ядро как бы программирует физиологию, биохимию и процессы развития клетки. Во-вторых, ядро содержит хромосомы, в которых записана наследственная информация, позволяющая клетке выразить ее индивидуальность. Иными словами, ядро является носителем основных наследственных признаков организма. Некоторые ученые приписывают ядру и структурообразовательную роль, например, образование митохондрий, мембран эндоплазматической сети и др.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Естествознание.ру
Строение клетки
Жизнь — способ существования одних тел за счет выживания других.
Задумывались ли вы, из чего состоят растения, животные и человек? На первый взгляд все вокруг состоит из крупных деталей — частей тела и органов. На самом деле все живое на планете состоит из микроскопических частиц — клеток. Деревья, звери, человек, микробы — все организмы построены из невидимых глазу «кирпичиков». Собранные воедино, они складываются в целостную систему. Но каждая клетка — отдельный микромир со своими свойствами и функциями.
Когда одной клетки достаточно
До 1665 года человечество не подозревало о существовании клеток. Впервые их обнаружил англичанин Роберт Гук. Он разглядывал через увеличительный прибор кору дуба и заметил, что она состоит из множества ячеек. Позднее выяснилось, что это были мертвые оболочки клеток, полые внутри.
В живых клетках растений, в отличие от мертвых, присутствует вязкое вещество — цитоплазма, в которой плавают ядро и вакуоли — пузырьки с клеточным соком. Взгляните на разрезанный помидор или кусочек арбуза. Вы заметите, что спелая мякоть состоит из мельчайших гранул. Это и есть растительные клетки.
Как вы думаете, все ли живые существа состоят из множества клеток, или порой достаточно и одной, чтобы создание могло полноценно жить, питаться и размножаться? Иногда одной клетки хватает для жизни. На Земле есть ничтожно малые существа — одноклеточные, организм которых состоит из одной-единственной клетки.
В 1675 году голландский ученый Антони ван Левенгук начал рассматривать под микроскопом капельки воды. Он заметил, что жидкость кишит микроскопическими созданиями. Каждое из них могло бы с легкостью проплыть сквозь тонкое игольное ушко. Тела этих крошечных существ состояли из одной клетки. Тем не менее, организмы легко реагировали на свет, тепло, химические вещества и механические раздражители. Они были способны самостоятельно питаться, дышать, размножаться, расти и развиваться.
Однажды Роберт Гук (1635-1703 гг. — английский естествоиспытатель и изобретатель) вел наблюдения на старом микроскопе. Он был в виде полуметровой позолоченной вертикальной трубы. Работать на нем приходилось, согнувшись в три погибели. Гук решил усовершенствовать прибор. Для начала он сделал тубус наклонным. Затем биолог установил перед прибором масляную лампу для лучшего освещения. Потом к нему пришла мысль усилить свет за счет солнечных лучей и сконцентрировать его. Так появился большой стеклянный шар, наполненный водой. За ним была установлена специальная линза. Эта оптическая система в сотни раз усиливала яркость освещения.
Ученые сделали вывод: одноклеточные — такие же живые существа, как, к примеру, слон или человек. С тех пор все живое делится на две группы — одноклеточные и многоклеточные.
Строение клетки
Животные и растительные клетки имеют схожее строение. Внутри клетка заполнена цитоплазмой, в которой «плавают» внутренние компоненты.
Главный орган клетки — ядро, покрытое пористой оболочкой. Сквозь поры в ядро и обратно поступают питательные вещества и отходы. Ядро заполнено соком, в котором находятся ниточки молекул ДНК и ядрышко. Ядро — главнокомандующий, оно управляет всеми процессами внутри клетки и заведует важной генетической информацией.
Помимо ядра, вакуолей и цитоплазмы внутри клетки присутствуют и другие органоиды. И в животных, и в растительных клетках есть вакуоли — пузырьки, заполненные клеточным соком. Они отвечают за хранение питательных веществ, обезвреживание ядов и вывод отходов. Митохондрии — производители энергии. Они помогают клетке дышать, размножаться, расти. Аппарат Гольджи отвечает за производство, хранение и доставку веществ в разные части клетки. Рибосомы в ответе за выработку белка — строительного материала. Лизосомы, мешочки с ферментами, которые ускоряют процессы в организме, переваривают пищу. Пероксисомы тоже содержат ферменты. Они нейтрализуют вредные вещества и разрушают жиры.
У растительных и животных клеток есть и отличия
Клетки бывают крупных размеров. Например, клетка стебля льна достигает 40 мм, а клетка мякоти арбуза — 1 мм. Их видно невооруженным глазом.
Митохондрии и хлоропласты
Все клетки нуждаются в питании, которое они получают при помощи митохондрий и хлоропластов.
Митохондрии производят аденозинтрифосфорную кислоту (АТФ). Это своеобразный аналог батарейки, которая вырабатывает, хранит и распределяет между органоидами энергию. Активные клетки расходуют большое количество энергии, и митохондрий в них много. Если внутренние процессы в клетке протекают вяло, избыток энергии ни к чему. В такой клетке митохондрий мало. Митохондрии могут иметь спиралевидную, округлую, чашевидную и нитевидную формы и даже способны трансформироваться. Они передвигаются внутри клетки. Эти частички словно чувствуют, какая часть клетки остро нуждается в энергии, и спешат именно туда.
Хлоропласты — такие же «энергетические фабрики» в клетках зеленых растений. Они достигают в ширину 2-4 микрометров, в длину — 5-10 микрометров. У зеленых водорослей встречаются хроматофоры — гигантские хлоропласты длиной 50 микрометров. Таких хроматофоров может содержаться всего по одному на клетку.
В хлоропластах содержится пигмент хлорофилл, который окрашивает растения в зеленый цвет и участвует в важнейшем процессе — фотосинтезе. При помощи хлорофилла зеленые растения поглощают солнечный свет и перерабатывают его в органические вещества.
Ядро клетки
Самая первая живая клетка зародилась на планете миллионы лет назад. Ученые до сих пор спорят о том, когда и как она появилась: в воде или на суше, из каких частиц, в каких условиях.
В поиске истины ученые выдвинули две теории происхождения клеток: клеточную и теорию биогенеза. Клеточная теория стала основополагающей. В середине XIX века после долгих исследований немецкие ученые Маттиас Шлейден и Теодор Шванн впервые заявили: абсолютно все живые организмы на Земле состоят из клеток. Так появилась клеточная теория. Немногим позднее Рудольф Вирхов высказал мнение о том, что живая клетка может произойти только от живой клетки, а ее спонтанное появление из неживой материи невозможно. Выходит, жизнь была всегда. Вечно. Это стало главным утверждением биогенеза.
Оказывается, не у каждой клетки есть ядро. Да-да, существуют организмы, способные выжить без этого важнейшего компонента. Исходя из этого, современные ученые выделяют два вида клеток: прокариотические и эукариотические. Названия этих групп произошли от древнегреческого языка. Слово «карио» переводится как ядро, приставка «про» — до, «эу» — хорошо. Значит, прокариоты — это организмы, клетки которых не содержат ядра. К доядерным относятся бактерии, сине-зеленые водоросли и археи — древнейшие одноклеточные.
В целом эукариотические клетки отличаются от прокариотов сложностью своей конструкции. Биологи считают, что прокариоты — предки эукариотов, которые в процессе эволюции начали объединяться, образуя многоклеточные организмы.
Симбиогенез. История о том, как съеденная жертва стала звеном эволюции
Между живой клеткой и большинством высокоупорядоченных небиологических систем, таких как кристалл или снежинка, существует пропасть настолько обширная и абсолютная, как только можно представить»
Майкл Дентон, британско-австралийский биохимик
Миллионы лет назад, когда начала зарождаться жизнь, Землю населяли одноклеточные безъядерные создания. Они жили, питались и размножались. Крупные особи пожирали мелких. Однажды кроха, проглоченная «хищником», выжила внутри его организма и поселилась там. Поскольку внутри одноклеточного прокариота была лишь цитоплазма, кроха прижилась в ней. Спустя годы эволюции съеденные микроскопические организмы превратились в митохондрии и хлоропласты. На самом деле все происходило не так быстро, как может показаться.
Эукариоты образовывались в несколько этапов
Клетка
На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.
Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.
Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.
Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.
Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.
Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.
Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.
Строение и функции растительной клетки
Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.
Строение растительной клетки
Строение и функции органоидов растительной клетки
Клеточная стенка или плазматическая мембрана
Бесцветная, прозрачная и очень прочная
Пропускает в клетку и выпускает из клетки вещества.
Клеточная мембрана полупроницаемая
Густое тягучее вещество
В ней располагаются все другие части клетки
Находится в постоянном движении
Ядро (важная часть клетки)
Округлое или овальное
Обеспечивает передачу наследственных свойств дочерним клеткам при делении
Центральная часть клетки
Сферической или неправильной формы
Принимает участие в синтезе белка
Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок
Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.
По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль
Используют световую энергию солнца и создают органические из неорганических
Форма дисков, отграниченных от цитоплазмы двойной мембраной
Образуются в результате накопления каротиноидов
Жёлтые, оранжевые или бурые
Содержатся в корнях, клубнях, луковицах
Состоит из двух мембран (наружная и внутренняя) с порами
Отграничивает ядро от цитоплазмы
Даёт возможность осуществляться обмену между ядром и цитоплазмой
Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.
Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.
Современная обобщенная схема растительной клетки
Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.
Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.
Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.
Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.
Строение клеточной мембраны
Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.
Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.
Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.
Цитоплазматические образования – органеллы
Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.
Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.
Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.
Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.
Ядрышко
Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.
Аппарат Гольджи
Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.
В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.
Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.
Лизосомы
Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).
Микротрубочки
Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.
Вакуоль
Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.
Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.
Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.
В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.
Пластиды
Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.
Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.
Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.
Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.
Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.
Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.
Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.
Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.
Митохондрии
Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.
Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.
Эндоплазматическая сеть
Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.
Строение эндоплазматической сети
Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.
Рибосомы
Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.
Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.
- Что означает если очень сильно болит голова
- Связки голеностопного сустава растяжение что делать